Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 178673 by Tawa11 last updated on 20/Oct/22

Answered by mr W last updated on 20/Oct/22

I=((mr^2 )/2)+mr^2 =((3mr^2 )/2)  ((Iω^2 )/2)=mgLsin θ  ω=(1/r)(√((2gLsin θ)/(3/2)))=(2/r)(√((gLsin θ)/3))=(2/(0.1))(√((9.81×6×sin 30°)/3))=62.64 rad/s  v=ωr=6.264 m/s    t=(d/(v cos θ))  H=v sin θ t+((gt^2 )/2)  H=v sin θ×(d/(v cos θ))+(g/2)×(d^2 /(v^2 cos^2  θ))  ⇒((g(1+tan^2  θ))/(2v^2 ))d^2 +tan θ d−H=0  d=(v^2 /(g(1+tan^2  θ)))[−tan θ+(√(tan^2  θ+((2gH(1+tan^2  θ))/v^2 )))]  d=((6.264^2 )/(9.81(1+(1/3))))[−(1/( (√3)))+(√((1/3)+((2×9.81×5(1+(1/3)))/(6.264^2 ))))]≈4.01 m

$${I}=\frac{{mr}^{\mathrm{2}} }{\mathrm{2}}+{mr}^{\mathrm{2}} =\frac{\mathrm{3}{mr}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{I}\omega^{\mathrm{2}} }{\mathrm{2}}={mgL}\mathrm{sin}\:\theta \\ $$$$\omega=\frac{\mathrm{1}}{{r}}\sqrt{\frac{\mathrm{2}{gL}\mathrm{sin}\:\theta}{\frac{\mathrm{3}}{\mathrm{2}}}}=\frac{\mathrm{2}}{{r}}\sqrt{\frac{{gL}\mathrm{sin}\:\theta}{\mathrm{3}}}=\frac{\mathrm{2}}{\mathrm{0}.\mathrm{1}}\sqrt{\frac{\mathrm{9}.\mathrm{81}×\mathrm{6}×\mathrm{sin}\:\mathrm{30}°}{\mathrm{3}}}=\mathrm{62}.\mathrm{64}\:{rad}/{s} \\ $$$${v}=\omega{r}=\mathrm{6}.\mathrm{264}\:{m}/{s} \\ $$$$ \\ $$$${t}=\frac{{d}}{{v}\:\mathrm{cos}\:\theta} \\ $$$${H}={v}\:\mathrm{sin}\:\theta\:{t}+\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${H}={v}\:\mathrm{sin}\:\theta×\frac{{d}}{{v}\:\mathrm{cos}\:\theta}+\frac{{g}}{\mathrm{2}}×\frac{{d}^{\mathrm{2}} }{{v}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$\Rightarrow\frac{{g}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)}{\mathrm{2}{v}^{\mathrm{2}} }{d}^{\mathrm{2}} +\mathrm{tan}\:\theta\:{d}−{H}=\mathrm{0} \\ $$$${d}=\frac{{v}^{\mathrm{2}} }{{g}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)}\left[−\mathrm{tan}\:\theta+\sqrt{\mathrm{tan}^{\mathrm{2}} \:\theta+\frac{\mathrm{2}{gH}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)}{{v}^{\mathrm{2}} }}\right] \\ $$$${d}=\frac{\mathrm{6}.\mathrm{264}^{\mathrm{2}} }{\mathrm{9}.\mathrm{81}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)}\left[−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+\sqrt{\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}×\mathrm{9}.\mathrm{81}×\mathrm{5}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{6}.\mathrm{264}^{\mathrm{2}} }}\right]\approx\mathrm{4}.\mathrm{01}\:{m} \\ $$

Commented by Tawa11 last updated on 20/Oct/22

God bless you sir. I appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Answered by Acem last updated on 20/Oct/22

   Here μ= 0 and without friction the cylinder won′t   roll but will slipps... anyway it seems the director   wants to roll it by force!    a• w= ((√((2gLsin θ)/(1+c)))/R) = 62.64  rad.s^(−1)    ; c= (1/2)  , v= 6.264 m.s^(−1)     b• v_0 = 6.264 m.s^(−1)  ∡ 30^°   H= v_0 .sin θ.t +0.5g.t^2    4.905t^2 + 3.132t− 5= 0 ⇒ t= 0.739 s     Horizontal distance= v_0 cos θ.t= 4.008 m

$$ \\ $$$$\:{Here}\:\mu=\:\mathrm{0}\:{and}\:{without}\:{friction}\:{the}\:{cylinder}\:{won}'{t} \\ $$$$\:{roll}\:{but}\:{will}\:{slipps}...\:{anyway}\:{it}\:{seems}\:{the}\:{director} \\ $$$$\:{wants}\:{to}\:{roll}\:{it}\:{by}\:{force}! \\ $$$$ \\ $$$${a}\bullet\:{w}=\:\frac{\sqrt{\frac{\mathrm{2}{gL}\mathrm{sin}\:\theta}{\mathrm{1}+{c}}}}{{R}}\:=\:\mathrm{62}.\mathrm{64}\:\:{rad}.{s}^{−\mathrm{1}} \\ $$$$\:;\:{c}=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:,\:{v}=\:\mathrm{6}.\mathrm{264}\:{m}.{s}^{−\mathrm{1}} \\ $$$$ \\ $$$${b}\bullet\:{v}_{\mathrm{0}} =\:\mathrm{6}.\mathrm{264}\:{m}.{s}^{−\mathrm{1}} \:\measuredangle\:\mathrm{30}^{°} \\ $$$${H}=\:{v}_{\mathrm{0}} .\mathrm{sin}\:\theta.{t}\:+\mathrm{0}.\mathrm{5}{g}.{t}^{\mathrm{2}} \\ $$$$\:\mathrm{4}.\mathrm{905}{t}^{\mathrm{2}} +\:\mathrm{3}.\mathrm{132}{t}−\:\mathrm{5}=\:\mathrm{0}\:\Rightarrow\:{t}=\:\mathrm{0}.\mathrm{739}\:{s} \\ $$$$ \\ $$$$\:{Horizontal}\:{distance}=\:{v}_{\mathrm{0}} \mathrm{cos}\:\theta.{t}=\:\mathrm{4}.\mathrm{008}\:{m} \\ $$$$ \\ $$

Commented by Tawa11 last updated on 20/Oct/22

God bless you sir. I appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Commented by Acem last updated on 20/Oct/22

Yes i was wrong, we must say the acceleration   has changed from g.sinθ to g “not sum...ever”

$${Yes}\:{i}\:{was}\:{wrong},\:{we}\:{must}\:{say}\:{the}\:{acceleration} \\ $$$$\:{has}\:{changed}\:{from}\:{g}.{sin}\theta\:{to}\:{g}\:``{not}\:{sum}...{ever}'' \\ $$

Commented by Acem last updated on 20/Oct/22

You′re very much welcome... let me know how   many cycles the cylinder did when reached the edge   plus the angle if any.  (: think it before starting the solve =)

$${You}'{re}\:{very}\:{much}\:{welcome}...\:{let}\:{me}\:{know}\:{how} \\ $$$$\:{many}\:{cycles}\:{the}\:{cylinder}\:{did}\:{when}\:{reached}\:{the}\:{edge} \\ $$$$\:{plus}\:{the}\:{angle}\:{if}\:{any}. \\ $$$$\left(:\:{think}\:{it}\:{before}\:{starting}\:{the}\:{solve}\:=\right) \\ $$

Commented by Tawa11 last updated on 20/Oct/22

sir mrW  distance is correct sir.

$$\mathrm{sir}\:\mathrm{mrW}\:\:\mathrm{distance}\:\mathrm{is}\:\mathrm{correct}\:\mathrm{sir}. \\ $$

Commented by Tawa11 last updated on 20/Oct/22

Thanks for your time sir.

$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com