Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 178635 by infinityaction last updated on 19/Oct/22

solution set of  log_x^(2   )  ((x/(∣x∣))−x)≥0

$$\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\:\mathrm{log}_{\mathrm{x}^{\mathrm{2}\:\:\:} } \left(\frac{\mathrm{x}}{\mid\mathrm{x}\mid}−\mathrm{x}\right)\geqslant\mathrm{0} \\ $$

Commented by Frix last updated on 19/Oct/22

x≤−2∨0<x<1

$${x}\leqslant−\mathrm{2}\vee\mathrm{0}<{x}<\mathrm{1} \\ $$

Commented by infinityaction last updated on 20/Oct/22

sir solution

$${sir}\:{solution} \\ $$

Answered by mr W last updated on 20/Oct/22

for x^2 ≥1: (x/(∣x∣))−x≥1  for x>0:  1−x≥1 ⇒x≤0 ⇒contradition!  for x<0:  −1−x≥1 ⇒x≤−2 ✓    for x^2 ≤1: 0<(x/(∣x∣))−x≤1  for x>0:  0<1−x≤1 ⇒x≥0 ⇒1>x>0 ✓  for x<0:  0<−1−x≤1 ⇒−2 ≤x<−1 ⇒contradiction    ⇒solution: x≤−2 or 0<x<1

$${for}\:{x}^{\mathrm{2}} \geqslant\mathrm{1}:\:\frac{{x}}{\mid{x}\mid}−{x}\geqslant\mathrm{1} \\ $$$${for}\:{x}>\mathrm{0}: \\ $$$$\mathrm{1}−{x}\geqslant\mathrm{1}\:\Rightarrow{x}\leqslant\mathrm{0}\:\Rightarrow{contradition}! \\ $$$${for}\:{x}<\mathrm{0}: \\ $$$$−\mathrm{1}−{x}\geqslant\mathrm{1}\:\Rightarrow{x}\leqslant−\mathrm{2}\:\checkmark \\ $$$$ \\ $$$${for}\:{x}^{\mathrm{2}} \leqslant\mathrm{1}:\:\mathrm{0}<\frac{{x}}{\mid{x}\mid}−{x}\leqslant\mathrm{1} \\ $$$${for}\:{x}>\mathrm{0}: \\ $$$$\mathrm{0}<\mathrm{1}−{x}\leqslant\mathrm{1}\:\Rightarrow{x}\geqslant\mathrm{0}\:\Rightarrow\mathrm{1}>{x}>\mathrm{0}\:\checkmark \\ $$$${for}\:{x}<\mathrm{0}: \\ $$$$\mathrm{0}<−\mathrm{1}−{x}\leqslant\mathrm{1}\:\Rightarrow−\mathrm{2}\:\leqslant{x}<−\mathrm{1}\:\Rightarrow{contradiction} \\ $$$$ \\ $$$$\Rightarrow{solution}:\:{x}\leqslant−\mathrm{2}\:{or}\:\mathrm{0}<{x}<\mathrm{1} \\ $$

Commented by infinityaction last updated on 21/Oct/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com