Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178553 by Acem last updated on 18/Oct/22

Solve 1st: 3x^2 −2x−11> 0   2nd: x^4 + 4x^3 − 12x^2 ≤ 0

$${Solve}\:\mathrm{1}{st}:\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{11}>\:\mathrm{0} \\ $$ $$\:\mathrm{2}{nd}:\:{x}^{\mathrm{4}} +\:\mathrm{4}{x}^{\mathrm{3}} −\:\mathrm{12}{x}^{\mathrm{2}} \leqslant\:\mathrm{0} \\ $$

Answered by a.lgnaoui last updated on 18/Oct/22

1st  extremums:=(((1−(√(34)))/3);((1+(√(34)))/3))⇒3x^2 −2x−11>0 ⇔x∈]−∞,((1−(√(34)))/3)[∪]((1+(√(34)))/3),+∞  2nd extremums:(−(1+(√7) ),0,+(1+(√7) )  ⇒2x^4 +4x^3 −12x^2 ≤0    ⇔ x∈[−(1+(√7) ),−1+(√7) )]

$$\left.\mathrm{1}{st}\:\:{extremums}:=\left(\frac{\mathrm{1}−\sqrt{\mathrm{34}}}{\mathrm{3}};\frac{\mathrm{1}+\sqrt{\mathrm{34}}}{\mathrm{3}}\right)\Rightarrow\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{11}>\mathrm{0}\:\Leftrightarrow{x}\in\right]−\infty,\frac{\mathrm{1}−\sqrt{\mathrm{34}}}{\mathrm{3}}\left[\cup\right]\frac{\mathrm{1}+\sqrt{\mathrm{34}}}{\mathrm{3}},+\infty \\ $$ $$\mathrm{2}{nd}\:{extremums}:\left(−\left(\mathrm{1}+\sqrt{\mathrm{7}}\:\right),\mathrm{0},+\left(\mathrm{1}+\sqrt{\mathrm{7}}\:\right)\:\:\Rightarrow\mathrm{2}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} \leqslant\mathrm{0}\right. \\ $$ $$\left.\:\:\Leftrightarrow\:{x}\in\left[−\left(\mathrm{1}+\sqrt{\mathrm{7}}\:\right),−\mathrm{1}+\sqrt{\mathrm{7}}\:\right)\right] \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ $$\:\:\:\:\:\:\:\:\: \\ $$

Commented byAcem last updated on 18/Oct/22

Good Sir! the 1st is right, the 2nd is x∈ [−6, 4]   try it again, maybe i′m wrong    Am sorry i noted the first term as wrong   it′s x^4   not 2x^4

$${Good}\:{Sir}!\:{the}\:\mathrm{1}{st}\:{is}\:{right},\:{the}\:\mathrm{2}{nd}\:{is}\:\boldsymbol{{x}}\in\:\left[−\mathrm{6},\:\mathrm{4}\right] \\ $$ $$\:{try}\:{it}\:{again},\:{maybe}\:{i}'{m}\:{wrong} \\ $$ $$ \\ $$ $${Am}\:{sorry}\:{i}\:{noted}\:{the}\:{first}\:{term}\:{as}\:{wrong} \\ $$ $$\:\boldsymbol{{it}}'\boldsymbol{{s}}\:\boldsymbol{{x}}^{\mathrm{4}} \:\:{not}\:\mathrm{2}{x}^{\mathrm{4}} \\ $$

Answered by mr W last updated on 18/Oct/22

(2)  2x^2 (x^2 +2x−6)≤0  ⇒ x^2 +2x−6≤0  ⇒ −1−(√7)≤x≤−1+(√7)

$$\left(\mathrm{2}\right) \\ $$ $$\mathrm{2}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{6}\right)\leqslant\mathrm{0} \\ $$ $$\Rightarrow\:{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{6}\leqslant\mathrm{0} \\ $$ $$\Rightarrow\:−\mathrm{1}−\sqrt{\mathrm{7}}\leqslant{x}\leqslant−\mathrm{1}+\sqrt{\mathrm{7}} \\ $$

Commented byAcem last updated on 18/Oct/22

  Am sorry i noted the first term as wrong   it′s x^4   not 2x^4

$$ \\ $$ $${Am}\:{sorry}\:{i}\:{noted}\:{the}\:{first}\:{term}\:{as}\:{wrong} \\ $$ $$\:\boldsymbol{{it}}'\boldsymbol{{s}}\:\boldsymbol{{x}}^{\mathrm{4}} \:\:{not}\:\mathrm{2}{x}^{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com