Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178347 by Acem last updated on 15/Oct/22

Let f(x)= (ax+1)^5 .(1+bx)^4  ; a,b ∈ N   if times of x equal 62 so what are possible values   of the sum a, b?

$${Let}\:{f}\left({x}\right)=\:\left({ax}+\mathrm{1}\right)^{\mathrm{5}} .\left(\mathrm{1}+{bx}\right)^{\mathrm{4}} \:;\:{a},{b}\:\in\:\mathbb{N} \\ $$$$\:{if}\:{times}\:{of}\:{x}\:{equal}\:\mathrm{62}\:{so}\:{what}\:{are}\:{possible}\:{values} \\ $$$$\:{of}\:{the}\:{sum}\:{a},\:{b}? \\ $$$$ \\ $$

Answered by Acem last updated on 15/Oct/22

(1+ax)^5 = 1+5ax+10a^2 x^2 +...   (1+bx)^4 = 1+4bx+6b^2 x^2 +...    We take times x from multiplication   (5a+4b)x i.e. 5a+4b= 62 ...(1)     We need to (a+b) so and from (1)   4(a+b) = −a +62   Since a∈ N ⇒ 4(a+b) < 62 ⇔ a+b< 15.5   Since a+b∈ N⇒ a+b≤ 15 ... (2)     We repeat for b from (1)   5(a+b)= b+62 , b∈ N ⇒ 5(a+b)> 62⇒ a+b> 12.4   Since a+b∈ N⇒ a+b≥ 13...(3)     (2) & (3)   We find that the possible values of a+b are:   a+b= 13  ,  a+b= 14  ,   a+b= 15

$$\left(\mathrm{1}+{ax}\right)^{\mathrm{5}} =\:\mathrm{1}+\mathrm{5}{ax}+\mathrm{10}{a}^{\mathrm{2}} {x}^{\mathrm{2}} +... \\ $$$$\:\left(\mathrm{1}+{bx}\right)^{\mathrm{4}} =\:\mathrm{1}+\mathrm{4}{bx}+\mathrm{6}{b}^{\mathrm{2}} {x}^{\mathrm{2}} +... \\ $$$$ \\ $$$${We}\:{take}\:{times}\:{x}\:{from}\:{multiplication} \\ $$$$\:\left(\mathrm{5}{a}+\mathrm{4}{b}\right){x}\:{i}.{e}.\:\mathrm{5}{a}+\mathrm{4}{b}=\:\mathrm{62}\:...\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\:{We}\:{need}\:{to}\:\left({a}+{b}\right)\:{so}\:{and}\:{from}\:\left(\mathrm{1}\right) \\ $$$$\:\mathrm{4}\left({a}+{b}\right)\:=\:−{a}\:+\mathrm{62} \\ $$$$\:{Since}\:{a}\in\:\mathbb{N}\:\Rightarrow\:\mathrm{4}\left({a}+{b}\right)\:<\:\mathrm{62}\:\Leftrightarrow\:{a}+{b}<\:\mathrm{15}.\mathrm{5} \\ $$$$\:{Since}\:{a}+{b}\in\:\mathbb{N}\Rightarrow\:\boldsymbol{{a}}+\boldsymbol{{b}}\leqslant\:\mathrm{15}\:...\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\:{We}\:{repeat}\:{for}\:{b}\:{from}\:\left(\mathrm{1}\right) \\ $$$$\:\mathrm{5}\left({a}+{b}\right)=\:{b}+\mathrm{62}\:,\:{b}\in\:\mathbb{N}\:\Rightarrow\:\mathrm{5}\left({a}+{b}\right)>\:\mathrm{62}\Rightarrow\:{a}+{b}>\:\mathrm{12}.\mathrm{4} \\ $$$$\:{Since}\:{a}+{b}\in\:\mathbb{N}\Rightarrow\:\boldsymbol{{a}}+\boldsymbol{{b}}\geqslant\:\mathrm{13}...\left(\mathrm{3}\right) \\ $$$$ \\ $$$$\:\left(\mathrm{2}\right)\:\&\:\left(\mathrm{3}\right)\: \\ $$$${We}\:{find}\:{that}\:{the}\:{possible}\:{values}\:{of}\:{a}+{b}\:{are}: \\ $$$$\:{a}+{b}=\:\mathrm{13}\:\:,\:\:{a}+{b}=\:\mathrm{14}\:\:,\:\:\:{a}+{b}=\:\mathrm{15} \\ $$$$ \\ $$

Commented by Tawa11 last updated on 15/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by Acem last updated on 15/Oct/22

Thanks Sir

$${Thanks}\:{Sir} \\ $$

Answered by mr W last updated on 16/Oct/22

coef. of x term is  5×1^4 ×a×1^4 +4×1^3 ×b×1^5 =5a+4b  5a+4b=62  ⇒a=4k+10 ≥ 1 ⇒k≥−(9/4) ⇒k≥−2  ⇒b=−5k+3 ≥ 1 ⇒k≤(2/5) ⇒k≤0  a+b=4k+10−5k+3=−k+13  (a+b)_(min) =13 at k_(max) =0  (a+b)_(max) =15 at k_(min) =−2  ⇒a+b=13 or 14 or 15

$${coef}.\:{of}\:{x}\:{term}\:{is} \\ $$$$\mathrm{5}×\mathrm{1}^{\mathrm{4}} ×{a}×\mathrm{1}^{\mathrm{4}} +\mathrm{4}×\mathrm{1}^{\mathrm{3}} ×{b}×\mathrm{1}^{\mathrm{5}} =\mathrm{5}{a}+\mathrm{4}{b} \\ $$$$\mathrm{5}{a}+\mathrm{4}{b}=\mathrm{62} \\ $$$$\Rightarrow{a}=\mathrm{4}{k}+\mathrm{10}\:\geqslant\:\mathrm{1}\:\Rightarrow{k}\geqslant−\frac{\mathrm{9}}{\mathrm{4}}\:\Rightarrow{k}\geqslant−\mathrm{2} \\ $$$$\Rightarrow{b}=−\mathrm{5}{k}+\mathrm{3}\:\geqslant\:\mathrm{1}\:\Rightarrow{k}\leqslant\frac{\mathrm{2}}{\mathrm{5}}\:\Rightarrow{k}\leqslant\mathrm{0} \\ $$$${a}+{b}=\mathrm{4}{k}+\mathrm{10}−\mathrm{5}{k}+\mathrm{3}=−{k}+\mathrm{13} \\ $$$$\left({a}+{b}\right)_{{min}} =\mathrm{13}\:{at}\:{k}_{{max}} =\mathrm{0} \\ $$$$\left({a}+{b}\right)_{{max}} =\mathrm{15}\:{at}\:{k}_{{min}} =−\mathrm{2} \\ $$$$\Rightarrow{a}+{b}=\mathrm{13}\:{or}\:\mathrm{14}\:{or}\:\mathrm{15} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com