Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 178254 by lapache last updated on 14/Oct/22

Calcul  1−Σ_(n=1) ^(+∝) (2/(4n^2 −1))  2−Σ_(n=1) ^(+∝) (n^2 /(n!))  3− Σ_(n=1) ^(+∝) (n^3 /(n!))  4− Σ_(n=1) ^(+∝) ln((n/(n−1)))

$${Calcul} \\ $$$$\mathrm{1}−\underset{{n}=\mathrm{1}} {\overset{+\propto} {\sum}}\frac{\mathrm{2}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{2}−\underset{{n}=\mathrm{1}} {\overset{+\propto} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!} \\ $$$$\mathrm{3}−\:\underset{{n}=\mathrm{1}} {\overset{+\propto} {\sum}}\frac{{n}^{\mathrm{3}} }{{n}!} \\ $$$$\mathrm{4}−\:\underset{{n}=\mathrm{1}} {\overset{+\propto} {\sum}}{ln}\left(\frac{{n}}{{n}−\mathrm{1}}\right) \\ $$

Answered by mr W last updated on 14/Oct/22

(2)  e^x =Σ_(n=0) ^∞ (x^n /(n!))  (e^x )′=Σ_(n=0) ^∞ ((x^n /(n!)))′  e^x =Σ_(n=1) ^∞ ((nx^(n−1) )/(n!))  xe^x =Σ_(n=1) ^∞ ((nx^n )/(n!))  (xe^x )′=Σ_(n=1) ^∞ (((nx^n )/(n!)))′  (x+1)e^x =Σ_(n=1) ^∞ ((n^2 x^(n−1) )/(n!))  with x=1:  ⇒2e=Σ_(n=1) ^∞ (n^2 /(n!))  (3) similarly

$$\left(\mathrm{2}\right) \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\ $$$$\left({e}^{{x}} \right)'=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{{x}^{{n}} }{{n}!}\right)' \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}−\mathrm{1}} }{{n}!} \\ $$$${xe}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}} }{{n}!} \\ $$$$\left({xe}^{{x}} \right)'=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{{nx}^{{n}} }{{n}!}\right)' \\ $$$$\left({x}+\mathrm{1}\right){e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} {x}^{{n}−\mathrm{1}} }{{n}!} \\ $$$${with}\:{x}=\mathrm{1}: \\ $$$$\Rightarrow\mathrm{2}{e}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!} \\ $$$$\left(\mathrm{3}\right)\:{similarly} \\ $$

Commented by Tawa11 last updated on 14/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 14/Oct/22

(4)  =lim_(n→∞) (Σ_(k=2) ^n ln (k/(k−1)))  =lim_(n→∞) (ln (2/1)×(3/2)×...×(n/(n−1)))  =lim_(n→∞) (ln n)  =∞

$$\left(\mathrm{4}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\mathrm{ln}\:\frac{{k}}{{k}−\mathrm{1}}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{ln}\:\frac{\mathrm{2}}{\mathrm{1}}×\frac{\mathrm{3}}{\mathrm{2}}×...×\frac{{n}}{{n}−\mathrm{1}}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{ln}\:{n}\right) \\ $$$$=\infty \\ $$

Answered by mr W last updated on 14/Oct/22

(1)  =Σ_(n=1) ^∞ ((1/(2n−1))−(1/(2n+1)))  =((1/1)−(1/3))+((1/3)−(1/5))+((1/5)−(1/7))+...  =1

$$\left(\mathrm{1}\right) \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}\right)+\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}\right)+\left(\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}\right)+... \\ $$$$=\mathrm{1} \\ $$

Commented by lapache last updated on 14/Oct/22

Thank

$${Thank} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com