Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178240 by Shrinava last updated on 14/Oct/22

((a^(n+1)  + b^(n+1) )/(a^n  + b^n )) = (√(ab))   find   n=?

$$\frac{\mathrm{a}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\mathrm{a}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}} }\:=\:\sqrt{\mathrm{ab}}\:\:\:\mathrm{find}\:\:\:\mathrm{n}=? \\ $$

Answered by Rasheed.Sindhi last updated on 14/Oct/22

a^(n+1)  + b^(n+1) =a^(1/2) b^(1/2)  (a^n  + b^n )  a^(n+1)  + b^(n+1) =a^(n+(1/2)) b^(1/2)  + a^(1/2) b^(n+(1/2))   a^(n+1) −a^(n+(1/2)) b^(1/2) =a^(1/2) b^(n+(1/2)) −b^(n+1)   a^(n+(1/2)) (a^(1/2) −b^(1/2) )^(×) =b^(n+(1/2)) (a^(1/2) −b^(1/2) )^(×)  [a≠b]  a^(n+(1/2)) =b^(n+(1/2))   ((a/b))^(n+(1/2)) =1=((a/b))^0   n+(1/2)=0  n=−(1/2)

$$\mathrm{a}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} =\mathrm{a}^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{b}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\left(\mathrm{a}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}} \right) \\ $$$$\mathrm{a}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} =\mathrm{a}^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{b}^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\:\mathrm{a}^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{b}^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{a}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} −\mathrm{a}^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{b}^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{a}^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{b}^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{b}^{\mathrm{n}+\mathrm{1}} \\ $$$$\mathrm{a}^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} \overset{×} {\left(\mathrm{a}^{\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{b}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)}=\mathrm{b}^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} \overset{×} {\left(\mathrm{a}^{\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{b}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)}\:\left[\mathrm{a}\neq\mathrm{b}\right] \\ $$$$\mathrm{a}^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{b}^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{\boldsymbol{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{1}=\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{\mathrm{0}} \\ $$$$\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{n}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by mr W last updated on 14/Oct/22

nice solution!

$${nice}\:{solution}! \\ $$

Commented by Rasheed.Sindhi last updated on 14/Oct/22

Thanks sir!

$$\mathcal{T}{hanks}\:\boldsymbol{{sir}}! \\ $$

Commented by Tawa11 last updated on 14/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com