Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 178153 by mnjuly1970 last updated on 13/Oct/22

Answered by mr W last updated on 13/Oct/22

2=(1+(1/a))(1+(1/b))(1+(1/c))≥(1+(1/a))^3   ⇒a≥(1/( (2)^(1/3) −1)) ⇒a≥4  2=(1+(1/a))(1+(1/b))(1+(1/c))≤(1+(1/c))^3   ⇒c≤(1/( (2)^(1/3) −1)) ⇒c≤3    c=1:  (1+(1/a))(1+(1/b))(1+(1/1))=2  (1+(1/a))(1+(1/b))=1 ⇒no solution    c=2:  (1+(1/a))(1+(1/b))(1+(1/2))=2  b=((3(a+1))/(a−3))≤a   ⇒a^2 −6a−3≥0 ⇒a≥3+2(√3) ≥7  b=((3(a+1))/(a−3))=3+((12)/(a−3))  ⇒a= 4,5,6,7,9,15  ⇒a=7, b=6 or a=9, b= 5 or a=15, b=4    c=3:  (1+(1/a))(1+(1/b))(1+(1/3))=2  b=((2(a+1))/(a−2))=2+(6/(a−2))≤a  a^2 −4a−2≥0 ⇒a≥2+(√6)≥5  b=2+(6/(a−2))  ⇒a=3, 4, 5, 8  ⇒a=5, b=4 or a=8, b=3    summary:  (a,b,c)=(7,6,2), (9,5,2), (15,4,2), (5,4,3), (8,3,3)

$$\mathrm{2}=\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\geqslant\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)^{\mathrm{3}} \\ $$$$\Rightarrow{a}\geqslant\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}−\mathrm{1}}\:\Rightarrow{a}\geqslant\mathrm{4} \\ $$$$\mathrm{2}=\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\leqslant\left(\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)^{\mathrm{3}} \\ $$$$\Rightarrow{c}\leqslant\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}−\mathrm{1}}\:\Rightarrow{c}\leqslant\mathrm{3} \\ $$$$ \\ $$$${c}=\mathrm{1}: \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}\right)=\mathrm{2} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)=\mathrm{1}\:\Rightarrow{no}\:{solution} \\ $$$$ \\ $$$${c}=\mathrm{2}: \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2} \\ $$$${b}=\frac{\mathrm{3}\left({a}+\mathrm{1}\right)}{{a}−\mathrm{3}}\leqslant{a}\: \\ $$$$\Rightarrow{a}^{\mathrm{2}} −\mathrm{6}{a}−\mathrm{3}\geqslant\mathrm{0}\:\Rightarrow{a}\geqslant\mathrm{3}+\mathrm{2}\sqrt{\mathrm{3}}\:\geqslant\mathrm{7} \\ $$$${b}=\frac{\mathrm{3}\left({a}+\mathrm{1}\right)}{{a}−\mathrm{3}}=\mathrm{3}+\frac{\mathrm{12}}{{a}−\mathrm{3}} \\ $$$$\Rightarrow{a}=\:\cancel{\mathrm{4}},\cancel{\mathrm{5}},\cancel{\mathrm{6}},\mathrm{7},\mathrm{9},\mathrm{15} \\ $$$$\Rightarrow{a}=\mathrm{7},\:{b}=\mathrm{6}\:{or}\:{a}=\mathrm{9},\:{b}=\:\mathrm{5}\:{or}\:{a}=\mathrm{15},\:{b}=\mathrm{4} \\ $$$$ \\ $$$${c}=\mathrm{3}: \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{2} \\ $$$${b}=\frac{\mathrm{2}\left({a}+\mathrm{1}\right)}{{a}−\mathrm{2}}=\mathrm{2}+\frac{\mathrm{6}}{{a}−\mathrm{2}}\leqslant{a} \\ $$$${a}^{\mathrm{2}} −\mathrm{4}{a}−\mathrm{2}\geqslant\mathrm{0}\:\Rightarrow{a}\geqslant\mathrm{2}+\sqrt{\mathrm{6}}\geqslant\mathrm{5} \\ $$$${b}=\mathrm{2}+\frac{\mathrm{6}}{{a}−\mathrm{2}} \\ $$$$\Rightarrow{a}=\cancel{\mathrm{3}},\:\cancel{\mathrm{4}},\:\mathrm{5},\:\mathrm{8} \\ $$$$\Rightarrow{a}=\mathrm{5},\:{b}=\mathrm{4}\:{or}\:{a}=\mathrm{8},\:{b}=\mathrm{3} \\ $$$$ \\ $$$${summary}: \\ $$$$\left({a},{b},{c}\right)=\left(\mathrm{7},\mathrm{6},\mathrm{2}\right),\:\left(\mathrm{9},\mathrm{5},\mathrm{2}\right),\:\left(\mathrm{15},\mathrm{4},\mathrm{2}\right),\:\left(\mathrm{5},\mathrm{4},\mathrm{3}\right),\:\left(\mathrm{8},\mathrm{3},\mathrm{3}\right) \\ $$

Commented by mnjuly1970 last updated on 13/Oct/22

thanks  alot sir W

$${thanks}\:\:{alot}\:{sir}\:{W} \\ $$

Commented by Tawa11 last updated on 13/Oct/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com