Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 178131 by cortano1 last updated on 13/Oct/22

Commented by Frix last updated on 13/Oct/22

the radius is s×r with r being the real  solution of  r^3 −2r^2 +((3r)/2)−(1/4)=0  which is  r=(2/3)−((((17)/(216))+((√(33))/(72))))^(1/3) +((−((17)/(216))+((√(33))/(72))))^(1/3) ≈0.228155

$$\mathrm{the}\:\mathrm{radius}\:\mathrm{is}\:{s}×{r}\:\mathrm{with}\:{r}\:\mathrm{being}\:\mathrm{the}\:\mathrm{real} \\ $$$$\mathrm{solution}\:\mathrm{of} \\ $$$${r}^{\mathrm{3}} −\mathrm{2}{r}^{\mathrm{2}} +\frac{\mathrm{3}{r}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{is} \\ $$$${r}=\frac{\mathrm{2}}{\mathrm{3}}−\sqrt[{\mathrm{3}}]{\frac{\mathrm{17}}{\mathrm{216}}+\frac{\sqrt{\mathrm{33}}}{\mathrm{72}}}+\sqrt[{\mathrm{3}}]{−\frac{\mathrm{17}}{\mathrm{216}}+\frac{\sqrt{\mathrm{33}}}{\mathrm{72}}}\approx\mathrm{0}.\mathrm{228155} \\ $$

Commented by Tawa11 last updated on 13/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 13/Oct/22

Commented by mr W last updated on 13/Oct/22

let λ=(r/s)  [(√2)(s−r)]^2 −r^2 =[s−r+(√((s−2r)^2 −(2r)^2 ))]^2   2(1−λ)^2 −λ^2 =[1−λ+(√((1−2λ)^2 −(2λ)^2 ))]^2   λ=(1−λ)(√(1−4λ))  λ^3 −2λ^2 +(3/2)λ−(1/4)=0  ⇒λ≈0.2282

$${let}\:\lambda=\frac{{r}}{{s}} \\ $$$$\left[\sqrt{\mathrm{2}}\left({s}−{r}\right)\right]^{\mathrm{2}} −{r}^{\mathrm{2}} =\left[{s}−{r}+\sqrt{\left({s}−\mathrm{2}{r}\right)^{\mathrm{2}} −\left(\mathrm{2}{r}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} \\ $$$$\mathrm{2}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} −\lambda^{\mathrm{2}} =\left[\mathrm{1}−\lambda+\sqrt{\left(\mathrm{1}−\mathrm{2}\lambda\right)^{\mathrm{2}} −\left(\mathrm{2}\lambda\right)^{\mathrm{2}} }\right]^{\mathrm{2}} \\ $$$$\lambda=\left(\mathrm{1}−\lambda\right)\sqrt{\mathrm{1}−\mathrm{4}\lambda} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{2}\lambda^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{2}}\lambda−\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow\lambda\approx\mathrm{0}.\mathrm{2282} \\ $$

Commented by Tawa11 last updated on 14/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com