Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 178114 by aurpeyz last updated on 12/Oct/22

n is an integer greater than 1.  Quantity A: the number of positive divisor  of 2n.  Quantity B: twice the number of positive  divisors of n

$${n}\:{is}\:{an}\:{integer}\:{greater}\:{than}\:\mathrm{1}. \\ $$$${Quantity}\:{A}:\:{the}\:{number}\:{of}\:{positive}\:{divisor} \\ $$$${of}\:\mathrm{2}{n}. \\ $$$${Quantity}\:{B}:\:{twice}\:{the}\:{number}\:{of}\:{positive} \\ $$$${divisors}\:{of}\:{n} \\ $$

Commented by mr W last updated on 13/Oct/22

what is asked?

$${what}\:{is}\:{asked}? \\ $$

Answered by mr W last updated on 13/Oct/22

say n=p_1 ^n_1  p_2 ^n_2  ...p_k ^n_k   with p_i ∈P  number of divisors:  N(n)=(n_1 +1)(n_2 +1)...(n_k +1)    2n=2^1 p_1 ^n_1  p_2 ^n_2  ...p_k ^n_k    N(2n)=(1+1)(n_1 +1)(n_2 +1)...(n_k +1) if p_i ≠2  or  N(2n)=(n_1 +2)(n_2 +1)...(n_k +1) if p_1 =2    2N(n)=2(n_1 +1)(n_2 +1)...(n_k +1)               =N(2n) if p_i ≠2                    >N(2n) if p_1 =2

$${say}\:{n}={p}_{\mathrm{1}} ^{{n}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{n}_{\mathrm{2}} } ...{p}_{{k}} ^{{n}_{{k}} } \:{with}\:{p}_{{i}} \in\mathbb{P} \\ $$$${number}\:{of}\:{divisors}: \\ $$$${N}\left({n}\right)=\left({n}_{\mathrm{1}} +\mathrm{1}\right)\left({n}_{\mathrm{2}} +\mathrm{1}\right)...\left({n}_{{k}} +\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{2}{n}=\mathrm{2}^{\mathrm{1}} {p}_{\mathrm{1}} ^{{n}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{n}_{\mathrm{2}} } ...{p}_{{k}} ^{{n}_{{k}} } \\ $$$${N}\left(\mathrm{2}{n}\right)=\left(\mathrm{1}+\mathrm{1}\right)\left({n}_{\mathrm{1}} +\mathrm{1}\right)\left({n}_{\mathrm{2}} +\mathrm{1}\right)...\left({n}_{{k}} +\mathrm{1}\right)\:{if}\:{p}_{{i}} \neq\mathrm{2} \\ $$$${or} \\ $$$${N}\left(\mathrm{2}{n}\right)=\left({n}_{\mathrm{1}} +\mathrm{2}\right)\left({n}_{\mathrm{2}} +\mathrm{1}\right)...\left({n}_{{k}} +\mathrm{1}\right)\:{if}\:{p}_{\mathrm{1}} =\mathrm{2} \\ $$$$ \\ $$$$\mathrm{2}{N}\left({n}\right)=\mathrm{2}\left({n}_{\mathrm{1}} +\mathrm{1}\right)\left({n}_{\mathrm{2}} +\mathrm{1}\right)...\left({n}_{{k}} +\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:={N}\left(\mathrm{2}{n}\right)\:{if}\:{p}_{{i}} \neq\mathrm{2}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:>{N}\left(\mathrm{2}{n}\right)\:{if}\:{p}_{\mathrm{1}} =\mathrm{2}\:\:\:\:\: \\ $$

Commented by aurpeyz last updated on 13/Oct/22

a. Quantity A is greater than B  b. Quantity B is greater than A  c . they are equal  d. Cannot be determined by the given  information

$${a}.\:{Quantity}\:{A}\:{is}\:{greater}\:{than}\:{B} \\ $$$${b}.\:{Quantity}\:{B}\:{is}\:{greater}\:{than}\:{A} \\ $$$${c}\:.\:{they}\:{are}\:{equal} \\ $$$${d}.\:{Cannot}\:{be}\:{determined}\:{by}\:{the}\:{given} \\ $$$${information} \\ $$

Commented by mr W last updated on 13/Oct/22

answer d

$${answer}\:{d} \\ $$

Commented by mr W last updated on 13/Oct/22

example 1: n=15  n=15 has 4 divisors: 1,3,5,15  2n=30 has 8 divisors: 1,2,3,4,5,6,15,30  Qnt. A=8  Qnt.B=2×4=8  Qnt. A=Qnt. B    example 2: n=10  n=10 has 4 divisors: 1,2,5,10  2n=20 has 6 divisors: 1,2,4,5,10,20  Qnt. A=6  Qnt. B=2×4=8  Qnt. A<Qnt. B

$${example}\:\mathrm{1}:\:{n}=\mathrm{15} \\ $$$${n}=\mathrm{15}\:{has}\:\mathrm{4}\:{divisors}:\:\mathrm{1},\mathrm{3},\mathrm{5},\mathrm{15} \\ $$$$\mathrm{2}{n}=\mathrm{30}\:{has}\:\mathrm{8}\:{divisors}:\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{15},\mathrm{30} \\ $$$${Qnt}.\:{A}=\mathrm{8} \\ $$$${Qnt}.{B}=\mathrm{2}×\mathrm{4}=\mathrm{8} \\ $$$${Qnt}.\:{A}={Qnt}.\:{B} \\ $$$$ \\ $$$${example}\:\mathrm{2}:\:{n}=\mathrm{10} \\ $$$${n}=\mathrm{10}\:{has}\:\mathrm{4}\:{divisors}:\:\mathrm{1},\mathrm{2},\mathrm{5},\mathrm{10} \\ $$$$\mathrm{2}{n}=\mathrm{20}\:{has}\:\mathrm{6}\:{divisors}:\:\mathrm{1},\mathrm{2},\mathrm{4},\mathrm{5},\mathrm{10},\mathrm{20} \\ $$$${Qnt}.\:{A}=\mathrm{6} \\ $$$${Qnt}.\:{B}=\mathrm{2}×\mathrm{4}=\mathrm{8} \\ $$$${Qnt}.\:{A}<{Qnt}.\:{B} \\ $$

Commented by Tawa11 last updated on 13/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by aurpeyz last updated on 18/Oct/22

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com