Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 177832 by HeferH last updated on 09/Oct/22

Answered by mr W last updated on 10/Oct/22

Commented by mr W last updated on 10/Oct/22

r_2 =(R/4)  (r_1 +r_2 )^2 −(((3R)/4)−r_1 )^2 =(R−r_1 )^2 −r_1 ^2   ⇒r_1 =((3R)/8)  (−(1/R)+(8/(3R))+(4/R)+(1/r))^2 =2((1/R^2 )+((64)/(9R^2 ))+((16)/R^2 )+(1/r^2 ))  (((17)/(3R))+(1/r))^2 =2(((217)/(9R^2 ))+(1/r^2 ))  (9/r^2 )−((102)/(Rr))+((145)/R^2 )=0  (R/r)=(1/9)(51+(√(51^2 −9×145)))=((87)/9)=((29)/3)  ⇒(r/R)=(3/(29)) ✓

$${r}_{\mathrm{2}} =\frac{{R}}{\mathrm{4}} \\ $$$$\left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\left(\frac{\mathrm{3}{R}}{\mathrm{4}}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} =\left({R}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} −{r}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\Rightarrow{r}_{\mathrm{1}} =\frac{\mathrm{3}{R}}{\mathrm{8}} \\ $$$$\left(−\frac{\mathrm{1}}{{R}}+\frac{\mathrm{8}}{\mathrm{3}{R}}+\frac{\mathrm{4}}{{R}}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{1}}{{R}^{\mathrm{2}} }+\frac{\mathrm{64}}{\mathrm{9}{R}^{\mathrm{2}} }+\frac{\mathrm{16}}{{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\right) \\ $$$$\left(\frac{\mathrm{17}}{\mathrm{3}{R}}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{217}}{\mathrm{9}{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\right) \\ $$$$\frac{\mathrm{9}}{{r}^{\mathrm{2}} }−\frac{\mathrm{102}}{{Rr}}+\frac{\mathrm{145}}{{R}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{1}}{\mathrm{9}}\left(\mathrm{51}+\sqrt{\mathrm{51}^{\mathrm{2}} −\mathrm{9}×\mathrm{145}}\right)=\frac{\mathrm{87}}{\mathrm{9}}=\frac{\mathrm{29}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{3}}{\mathrm{29}}\:\checkmark \\ $$

Commented by Tawa11 last updated on 10/Oct/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com