Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 177741 by infinityaction last updated on 08/Oct/22

Answered by Frix last updated on 08/Oct/22

let p=a_n ∧q=a_(n+1)   q^2 −2pq−p=0 ⇒ q=p+(√(p(p+1)))  ⇒ q>p ⇔ a_(n+1) >a_n   lim_(n→∞) (a_(n+1) /a_n ) =lim_(p→∞)  ((p+(√(p^2 +p)))/p) =2  ⇒  (a_n /3^n )∼(2^n /3^n )  Σ_(n=1) ^∞ (2^n /3^n )=2  ⇒  1<Σ_(n=1) ^∞ (a_n /3^n )<2

$$\mathrm{let}\:{p}={a}_{{n}} \wedge{q}={a}_{{n}+\mathrm{1}} \\ $$$${q}^{\mathrm{2}} −\mathrm{2}{pq}−{p}=\mathrm{0}\:\Rightarrow\:{q}={p}+\sqrt{{p}\left({p}+\mathrm{1}\right)} \\ $$$$\Rightarrow\:{q}>{p}\:\Leftrightarrow\:{a}_{{n}+\mathrm{1}} >{a}_{{n}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:=\underset{{p}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}+\sqrt{{p}^{\mathrm{2}} +{p}}}{{p}}\:=\mathrm{2} \\ $$$$\Rightarrow \\ $$$$\frac{{a}_{{n}} }{\mathrm{3}^{{n}} }\sim\frac{\mathrm{2}^{{n}} }{\mathrm{3}^{{n}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{{n}} }{\mathrm{3}^{{n}} }=\mathrm{2} \\ $$$$\Rightarrow \\ $$$$\mathrm{1}<\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{a}_{{n}} }{\mathrm{3}^{{n}} }<\mathrm{2} \\ $$

Commented by infinityaction last updated on 08/Oct/22

thanks sir

$${thanks}\:{sir} \\ $$

Answered by mr W last updated on 08/Oct/22

a_(n+1) ^2 −2a_(n+1) a_n −a_n =0  ((a_(n+1) /a_n ))^2 −2((a_(n+1) /a_n ))+1=(1/a_n )+1  ((a_(n+1) /a_n )−1)^2 =(1/a_n )+1>1, since a_n >0.  ⇒(a_(n+1) /a_n )>2  ((a_(n+1) /a_n )−1)^2 =(1/a_n )+1<2, since a_n >1.  ⇒(a_(n+1) /a_n )<1+(√2)  2<(a_(n+1) /a_n )<1+(√2)  2<(a_n /a_(n−1) )<1+(√2)  2<(a_(n−1) /a_(n−2) )<1+(√2)  ...  2<(a_2 /a_1 )<1+(√2)  Π:  2^(n−1) <(a_n /a_1 )<(1+(√2))^(n−1)   ⇒2^(n−1) <a_n <(1+(√2))^(n−1)   (1/2)((2/3))^n <(a_n /3^n )<(1/((1+(√2))))(((1+(√2))/3))^n   (1/2)Σ_(n=1) ^∞ ((2/3))^n <Σ_(n=1) ^∞ (a_n /3^n )<(1/((1+(√2))))Σ_(n=1) ^∞ (((1+(√2))/3))^n   (1/2)×(2/(3×(1−(2/3))))<Σ_(n=1) ^∞ (a_n /3^n )<(1/((1+(√2))))×((1+(√2))/(3×(1−((1+(√2))/3))))  1<Σ_(n=1) ^∞ (a_n /3^n )<1+((√2)/2)≈1.707

$${a}_{{n}+\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{a}_{{n}+\mathrm{1}} {a}_{{n}} −{a}_{{n}} =\mathrm{0} \\ $$$$\left(\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\right)+\mathrm{1}=\frac{\mathrm{1}}{{a}_{{n}} }+\mathrm{1} \\ $$$$\left(\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }−\mathrm{1}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{{a}_{{n}} }+\mathrm{1}>\mathrm{1},\:{since}\:{a}_{{n}} >\mathrm{0}. \\ $$$$\Rightarrow\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }>\mathrm{2} \\ $$$$\left(\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }−\mathrm{1}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{{a}_{{n}} }+\mathrm{1}<\mathrm{2},\:{since}\:{a}_{{n}} >\mathrm{1}. \\ $$$$\Rightarrow\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }<\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$$\mathrm{2}<\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }<\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$$\mathrm{2}<\frac{{a}_{{n}} }{{a}_{{n}−\mathrm{1}} }<\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$$\mathrm{2}<\frac{{a}_{{n}−\mathrm{1}} }{{a}_{{n}−\mathrm{2}} }<\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$$... \\ $$$$\mathrm{2}<\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }<\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$$\Pi: \\ $$$$\mathrm{2}^{{n}−\mathrm{1}} <\frac{{a}_{{n}} }{{a}_{\mathrm{1}} }<\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{{n}−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}^{{n}−\mathrm{1}} <{a}_{{n}} <\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{{n}−\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} <\frac{{a}_{{n}} }{\mathrm{3}^{{n}} }<\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}\left(\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{3}}\right)^{{n}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} <\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{a}_{{n}} }{\mathrm{3}^{{n}} }<\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{3}}\right)^{{n}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}}{\mathrm{3}×\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}\right)}<\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{a}_{{n}} }{\mathrm{3}^{{n}} }<\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}×\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{3}×\left(\mathrm{1}−\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{3}}\right)} \\ $$$$\mathrm{1}<\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{a}_{{n}} }{\mathrm{3}^{{n}} }<\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\approx\mathrm{1}.\mathrm{707} \\ $$

Commented by infinityaction last updated on 08/Oct/22

thanks sir

$${thanks}\:{sir} \\ $$

Commented by Tawa11 last updated on 09/Oct/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com