Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 17748 by ibraheem160 last updated on 10/Jul/17

f p^2 =qr,  prove thathat log_r ^p +log_(q=) ^p   2log_q ^p log_r ^p

$${f}\:{p}^{\mathrm{2}} ={qr},\:\:{prove}\:{thathat}\:{log}_{{r}} ^{{p}} +{log}_{{q}=} ^{{p}} \\ $$$$\mathrm{2}{log}_{{q}} ^{{p}} {log}_{{r}} ^{{p}} \\ $$

Commented by tawa tawa last updated on 10/Jul/17

((logp)/(logr)) + ((logp)/(logq))  = ((logplogq + logplogr)/(logrlogq))  = ((logp[logq + logr])/(logrlogq))  = ((logp(logqr))/(logrlogq))  from  p^2  = qr  = ((logplogp^2 )/(logrlogq))  = ((logp)/(logr)) × ((logp^2 )/(logq))  = log_r p × 2log_q p  = 2log_q plog_r p  QED

$$\frac{\mathrm{logp}}{\mathrm{logr}}\:+\:\frac{\mathrm{logp}}{\mathrm{logq}} \\ $$$$=\:\frac{\mathrm{logplogq}\:+\:\mathrm{logplogr}}{\mathrm{logrlogq}} \\ $$$$=\:\frac{\mathrm{logp}\left[\mathrm{logq}\:+\:\mathrm{logr}\right]}{\mathrm{logrlogq}} \\ $$$$=\:\frac{\mathrm{logp}\left(\mathrm{logqr}\right)}{\mathrm{logrlogq}} \\ $$$$\mathrm{from}\:\:\mathrm{p}^{\mathrm{2}} \:=\:\mathrm{qr} \\ $$$$=\:\frac{\mathrm{logplogp}^{\mathrm{2}} }{\mathrm{logrlogq}} \\ $$$$=\:\frac{\mathrm{logp}}{\mathrm{logr}}\:×\:\frac{\mathrm{logp}^{\mathrm{2}} }{\mathrm{logq}} \\ $$$$=\:\mathrm{log}_{\mathrm{r}} \mathrm{p}\:×\:\mathrm{2log}_{\mathrm{q}} \mathrm{p} \\ $$$$=\:\mathrm{2log}_{\mathrm{q}} \mathrm{plog}_{\mathrm{r}} \mathrm{p} \\ $$$$\mathrm{QED} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com