Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 177173 by Shrinava last updated on 01/Oct/22

Answered by Peace last updated on 02/Oct/22

let f(x)=e^(−(1/(x+1))) ,applie Taylors lagrange formul ⇒∃c∈[0,1] such that  f(x)=f(0)+xf′(c)=e^(−1) +x.(e^(−(1/(1+c))) /((1+c)^2 ))  We have ∀c∈[0,1] (e^(−(1/(1+c))) /((1+c)^2 ))≤1⇔t^2 e^(−t) ≤e^(−1) ,∀t∈[(1/2),1]  Wich is True (e^t /t^2 )=g(t),g′(t)=((t(t−2)e^t )/t^4 )<0,∀t∈[(1/2),1]  g(t)≥g(1)=e⇒et^2 ≥e^t ⇔t^2 e^(−t) ≤e^(−1) ⇒  ⇒f(x)≤e^(−1) +xe^(−1)   ∫_a ^b f(x)dx≤e^(−1) ∫_a ^b (1+x)dx=e^(−1) (b−a+((b^2 −a^2 )/2))=(((b−a))/(2e))(2+b+a)

$${let}\:{f}\left({x}\right)={e}^{−\frac{\mathrm{1}}{{x}+\mathrm{1}}} ,{applie}\:{Taylors}\:{lagrange}\:{formul}\:\Rightarrow\exists{c}\in\left[\mathrm{0},\mathrm{1}\right]\:{such}\:{that} \\ $$$${f}\left({x}\right)={f}\left(\mathrm{0}\right)+{xf}'\left({c}\right)={e}^{−\mathrm{1}} +{x}.\frac{{e}^{−\frac{\mathrm{1}}{\mathrm{1}+{c}}} }{\left(\mathrm{1}+{c}\right)^{\mathrm{2}} } \\ $$$${We}\:{have}\:\forall{c}\in\left[\mathrm{0},\mathrm{1}\right]\:\frac{{e}^{−\frac{\mathrm{1}}{\mathrm{1}+{c}}} }{\left(\mathrm{1}+{c}\right)^{\mathrm{2}} }\leqslant\mathrm{1}\Leftrightarrow{t}^{\mathrm{2}} {e}^{−{t}} \leqslant{e}^{−\mathrm{1}} ,\forall{t}\in\left[\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}\right] \\ $$$${Wich}\:{is}\:{True}\:\frac{{e}^{{t}} }{{t}^{\mathrm{2}} }={g}\left({t}\right),{g}'\left({t}\right)=\frac{{t}\left({t}−\mathrm{2}\right){e}^{{t}} }{{t}^{\mathrm{4}} }<\mathrm{0},\forall{t}\in\left[\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}\right] \\ $$$${g}\left({t}\right)\geqslant{g}\left(\mathrm{1}\right)={e}\Rightarrow{et}^{\mathrm{2}} \geqslant{e}^{{t}} \Leftrightarrow{t}^{\mathrm{2}} {e}^{−{t}} \leqslant{e}^{−\mathrm{1}} \Rightarrow \\ $$$$\Rightarrow{f}\left({x}\right)\leqslant{e}^{−\mathrm{1}} +{xe}^{−\mathrm{1}} \\ $$$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}\leqslant{e}^{−\mathrm{1}} \int_{{a}} ^{{b}} \left(\mathrm{1}+{x}\right){dx}={e}^{−\mathrm{1}} \left({b}−{a}+\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}}\right)=\frac{\left({b}−{a}\right)}{\mathrm{2}{e}}\left(\mathrm{2}+{b}+{a}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com