Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 1771 by hareem ali last updated on 19/Sep/15

2x−y+2z=4  x+10y−3z=10

$$\mathrm{2}{x}−{y}+\mathrm{2}{z}=\mathrm{4} \\ $$$${x}+\mathrm{10}{y}−\mathrm{3}{z}=\mathrm{10} \\ $$

Answered by 123456 last updated on 19/Sep/15

 [(2,(−1),2),(1,(10),(−3)),(0,0,0) ] [(x),(y),(z) ]= [(4),((10)),(0) ]   [(2,(−1),2,4),(1,(10),(−3),(10)) ]  ∼ [(2,(−1),2,4),(2,(20),(−6),(20)) ]  ∼ [(2,(−1),2,4),(0,(21),(−8),(16)) ]  ∼ [((42),(−21),(42),(84)),(0,(21),(−8),(16)) ]  ∼ [((42),0,(34),(100)),(0,(21),(−8),(16)) ]  ∼ [(1,0,((17)/(21)),((50)/(21))),(0,1,(−(8/(21))),((16)/(21))) ]   [(x),(y),(z) ]= [(((50−17t)/(21))),(((16+8t)/(21))),(t) ]

$$\begin{bmatrix}{\mathrm{2}}&{−\mathrm{1}}&{\mathrm{2}}\\{\mathrm{1}}&{\mathrm{10}}&{−\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{bmatrix}\begin{bmatrix}{{x}}\\{{y}}\\{{z}}\end{bmatrix}=\begin{bmatrix}{\mathrm{4}}\\{\mathrm{10}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\begin{bmatrix}{\mathrm{2}}&{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{1}}&{\mathrm{10}}&{−\mathrm{3}}&{\mathrm{10}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{2}}&{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{2}}&{\mathrm{20}}&{−\mathrm{6}}&{\mathrm{20}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{2}}&{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{0}}&{\mathrm{21}}&{−\mathrm{8}}&{\mathrm{16}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{42}}&{−\mathrm{21}}&{\mathrm{42}}&{\mathrm{84}}\\{\mathrm{0}}&{\mathrm{21}}&{−\mathrm{8}}&{\mathrm{16}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{42}}&{\mathrm{0}}&{\mathrm{34}}&{\mathrm{100}}\\{\mathrm{0}}&{\mathrm{21}}&{−\mathrm{8}}&{\mathrm{16}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}&{\frac{\mathrm{17}}{\mathrm{21}}}&{\frac{\mathrm{50}}{\mathrm{21}}}\\{\mathrm{0}}&{\mathrm{1}}&{−\frac{\mathrm{8}}{\mathrm{21}}}&{\frac{\mathrm{16}}{\mathrm{21}}}\end{bmatrix} \\ $$$$\begin{bmatrix}{{x}}\\{{y}}\\{{z}}\end{bmatrix}=\begin{bmatrix}{\frac{\mathrm{50}−\mathrm{17}{t}}{\mathrm{21}}}\\{\frac{\mathrm{16}+\mathrm{8}{t}}{\mathrm{21}}}\\{{t}}\end{bmatrix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com