Previous in Matrices and Determinants Next in Matrices and Determinants | ||
Question Number 1771 by hareem ali last updated on 19/Sep/15 | ||
$$\mathrm{2}{x}−{y}+\mathrm{2}{z}=\mathrm{4} \\ $$$${x}+\mathrm{10}{y}−\mathrm{3}{z}=\mathrm{10} \\ $$ | ||
Answered by 123456 last updated on 19/Sep/15 | ||
$$\begin{bmatrix}{\mathrm{2}}&{−\mathrm{1}}&{\mathrm{2}}\\{\mathrm{1}}&{\mathrm{10}}&{−\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{bmatrix}\begin{bmatrix}{{x}}\\{{y}}\\{{z}}\end{bmatrix}=\begin{bmatrix}{\mathrm{4}}\\{\mathrm{10}}\\{\mathrm{0}}\end{bmatrix} \\ $$$$\begin{bmatrix}{\mathrm{2}}&{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{1}}&{\mathrm{10}}&{−\mathrm{3}}&{\mathrm{10}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{2}}&{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{2}}&{\mathrm{20}}&{−\mathrm{6}}&{\mathrm{20}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{2}}&{−\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\\{\mathrm{0}}&{\mathrm{21}}&{−\mathrm{8}}&{\mathrm{16}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{42}}&{−\mathrm{21}}&{\mathrm{42}}&{\mathrm{84}}\\{\mathrm{0}}&{\mathrm{21}}&{−\mathrm{8}}&{\mathrm{16}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{42}}&{\mathrm{0}}&{\mathrm{34}}&{\mathrm{100}}\\{\mathrm{0}}&{\mathrm{21}}&{−\mathrm{8}}&{\mathrm{16}}\end{bmatrix} \\ $$$$\sim\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}&{\frac{\mathrm{17}}{\mathrm{21}}}&{\frac{\mathrm{50}}{\mathrm{21}}}\\{\mathrm{0}}&{\mathrm{1}}&{−\frac{\mathrm{8}}{\mathrm{21}}}&{\frac{\mathrm{16}}{\mathrm{21}}}\end{bmatrix} \\ $$$$\begin{bmatrix}{{x}}\\{{y}}\\{{z}}\end{bmatrix}=\begin{bmatrix}{\frac{\mathrm{50}−\mathrm{17}{t}}{\mathrm{21}}}\\{\frac{\mathrm{16}+\mathrm{8}{t}}{\mathrm{21}}}\\{{t}}\end{bmatrix} \\ $$ | ||