Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 176895 by Mastermind last updated on 27/Sep/22

7C=log_2 (1/6)+log_3 27    Solve

$$\mathrm{7C}=\mathrm{log}_{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{6}}+\mathrm{log}_{\mathrm{3}} \mathrm{27} \\ $$$$ \\ $$$$\mathrm{Solve} \\ $$

Answered by BaliramKumar last updated on 27/Sep/22

7C = −log_2 (6)+3log_3 (3)  7C = −log_2 (2)−log_2 (3)+3  7C = −1−log_2 (3)+3  7C = 2 − log_2 (3)  C = (2/7) − ((log_2 (3))/7)  C = ((log_2 (4) − log_2 (3))/7)  C = ((log_2 ((4/3)))/7)

$$\mathrm{7}{C}\:=\:−{log}_{\mathrm{2}} \left(\mathrm{6}\right)+\mathrm{3}{log}_{\mathrm{3}} \left(\mathrm{3}\right) \\ $$$$\mathrm{7}{C}\:=\:−{log}_{\mathrm{2}} \left(\mathrm{2}\right)−{log}_{\mathrm{2}} \left(\mathrm{3}\right)+\mathrm{3} \\ $$$$\mathrm{7}{C}\:=\:−\mathrm{1}−{log}_{\mathrm{2}} \left(\mathrm{3}\right)+\mathrm{3} \\ $$$$\mathrm{7}{C}\:=\:\mathrm{2}\:−\:{log}_{\mathrm{2}} \left(\mathrm{3}\right) \\ $$$${C}\:=\:\frac{\mathrm{2}}{\mathrm{7}}\:−\:\frac{{log}_{\mathrm{2}} \left(\mathrm{3}\right)}{\mathrm{7}} \\ $$$${C}\:=\:\frac{{log}_{\mathrm{2}} \left(\mathrm{4}\right)\:−\:{log}_{\mathrm{2}} \left(\mathrm{3}\right)}{\mathrm{7}} \\ $$$${C}\:=\:\frac{\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)}{\mathrm{7}} \\ $$$$ \\ $$

Answered by Frix last updated on 28/Sep/22

log_2  (1/6) =−log_2  6 =−((ln 6)/(ln 2))=−((ln 3 +ln 2)/(ln 2))=−1−((ln 3)/(ln 2))  log_3  27 =log_3  3^3 =3  7C=2−((ln 3)/(ln 2))  C=(2/7)−((ln 3)/(7ln 2)) (=(2/7)−(1/7)log_2  3)

$$\mathrm{log}_{\mathrm{2}} \:\frac{\mathrm{1}}{\mathrm{6}}\:=−\mathrm{log}_{\mathrm{2}} \:\mathrm{6}\:=−\frac{\mathrm{ln}\:\mathrm{6}}{\mathrm{ln}\:\mathrm{2}}=−\frac{\mathrm{ln}\:\mathrm{3}\:+\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{2}}=−\mathrm{1}−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{2}} \\ $$$$\mathrm{log}_{\mathrm{3}} \:\mathrm{27}\:=\mathrm{log}_{\mathrm{3}} \:\mathrm{3}^{\mathrm{3}} =\mathrm{3} \\ $$$$\mathrm{7}{C}=\mathrm{2}−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{2}} \\ $$$${C}=\frac{\mathrm{2}}{\mathrm{7}}−\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{7ln}\:\mathrm{2}}\:\left(=\frac{\mathrm{2}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{7}}\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com