Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 176662 by Matica last updated on 24/Sep/22

  sequence V_(n+1) −V_n =n+3^n . Find V_n .

$$\:\:{sequence}\:{V}_{{n}+\mathrm{1}} −{V}_{{n}} ={n}+\mathrm{3}^{{n}} .\:{Find}\:{V}_{{n}} . \\ $$

Answered by mr W last updated on 24/Sep/22

V_n −V_(n−1) =n−1+3^(n−1)   V_(n−1) −V_(n−2) =n−2+3^(n−2)   ...  V_2 −V_1 =1+3^1   Σ:  V_n −V_1 =1+2+...+(n−1)+3^1 +3^2 +...+3^(n−1)   V_n −V_1 =(((n−1)n)/2)+((3(3^(n−1) −1))/(3−1))  ⇒V_n =V_1 +(((n−1)n+3^n −3)/2)

$${V}_{{n}} −{V}_{{n}−\mathrm{1}} ={n}−\mathrm{1}+\mathrm{3}^{{n}−\mathrm{1}} \\ $$$${V}_{{n}−\mathrm{1}} −{V}_{{n}−\mathrm{2}} ={n}−\mathrm{2}+\mathrm{3}^{{n}−\mathrm{2}} \\ $$$$... \\ $$$${V}_{\mathrm{2}} −{V}_{\mathrm{1}} =\mathrm{1}+\mathrm{3}^{\mathrm{1}} \\ $$$$\Sigma: \\ $$$${V}_{{n}} −{V}_{\mathrm{1}} =\mathrm{1}+\mathrm{2}+...+\left({n}−\mathrm{1}\right)+\mathrm{3}^{\mathrm{1}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{3}^{{n}−\mathrm{1}} \\ $$$${V}_{{n}} −{V}_{\mathrm{1}} =\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}+\frac{\mathrm{3}\left(\mathrm{3}^{{n}−\mathrm{1}} −\mathrm{1}\right)}{\mathrm{3}−\mathrm{1}} \\ $$$$\Rightarrow{V}_{{n}} ={V}_{\mathrm{1}} +\frac{\left({n}−\mathrm{1}\right){n}+\mathrm{3}^{{n}} −\mathrm{3}}{\mathrm{2}} \\ $$

Commented by Tawa11 last updated on 25/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by mnjuly1970 last updated on 24/Sep/22

            −−−−−−−−         Σ_(k=1) ^n (V_(k+1)  −V_k ) = ((n(n+1))/2) +((3(1−3^( n) ))/(−2))         l.h.s(telescopic series)::            V_( n+1)  −V_1 = ((n(1+n))/2) +(3^( n+1) /2) −(3/2)    n→ n−1         V_n  = V_1  +(((n−1)n)/2) +(3^( n) /2) −(3/2)             −−−−−−−−−

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({V}_{{k}+\mathrm{1}} \:−{V}_{{k}} \right)\:=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:+\frac{\mathrm{3}\left(\mathrm{1}−\mathrm{3}^{\:{n}} \right)}{−\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:{l}.{h}.{s}\left({telescopic}\:{series}\right):: \\ $$$$\:\:\:\:\:\:\:\:\:\:{V}_{\:{n}+\mathrm{1}} \:−{V}_{\mathrm{1}} =\:\frac{{n}\left(\mathrm{1}+{n}\right)}{\mathrm{2}}\:+\frac{\mathrm{3}^{\:{n}+\mathrm{1}} }{\mathrm{2}}\:−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:{n}\rightarrow\:{n}−\mathrm{1}\:\:\:\:\:\:\:\:\:{V}_{{n}} \:=\:{V}_{\mathrm{1}} \:+\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}\:+\frac{\mathrm{3}^{\:{n}} }{\mathrm{2}}\:−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$

Answered by Mathspace last updated on 25/Sep/22

Σ_(k=0) ^n v_(k+1) −v_k =Σ_(k=0) ^n k+Σ_(k=0) ^n 3^k   =((n(n+1))/2)+((1−3^(n+1) )/(1−3))  =((n(n+1))/2)−((1−3^(n+1) )/2) ⇒  v_(n+1) −v_0 =((n^2 +n−1+3^(n+1) )/2) ⇒  v_n =v_0 +(((n−1)^2 +(n−1)−1+3^n )/2)  =v_0 +((n^2 −2n+1+n−2+3^n )/2)  =v_0 +((3^n +n^2 −n−1)/2) with  v_1 −v_0 =1

$$\sum_{{k}=\mathrm{0}} ^{{n}} {v}_{{k}+\mathrm{1}} −{v}_{{k}} =\sum_{{k}=\mathrm{0}} ^{{n}} {k}+\sum_{{k}=\mathrm{0}} ^{{n}} \mathrm{3}^{{k}} \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+\frac{\mathrm{1}−\mathrm{3}^{{n}+\mathrm{1}} }{\mathrm{1}−\mathrm{3}} \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}−\frac{\mathrm{1}−\mathrm{3}^{{n}+\mathrm{1}} }{\mathrm{2}}\:\Rightarrow \\ $$$${v}_{{n}+\mathrm{1}} −{v}_{\mathrm{0}} =\frac{{n}^{\mathrm{2}} +{n}−\mathrm{1}+\mathrm{3}^{{n}+\mathrm{1}} }{\mathrm{2}}\:\Rightarrow \\ $$$${v}_{{n}} ={v}_{\mathrm{0}} +\frac{\left({n}−\mathrm{1}\right)^{\mathrm{2}} +\left({n}−\mathrm{1}\right)−\mathrm{1}+\mathrm{3}^{{n}} }{\mathrm{2}} \\ $$$$={v}_{\mathrm{0}} +\frac{{n}^{\mathrm{2}} −\mathrm{2}{n}+\mathrm{1}+{n}−\mathrm{2}+\mathrm{3}^{{n}} }{\mathrm{2}} \\ $$$$={v}_{\mathrm{0}} +\frac{\mathrm{3}^{{n}} +{n}^{\mathrm{2}} −{n}−\mathrm{1}}{\mathrm{2}}\:{with} \\ $$$${v}_{\mathrm{1}} −{v}_{\mathrm{0}} =\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com