Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 176589 by Ar Brandon last updated on 22/Sep/22

Answered by Peace last updated on 23/Sep/22

∣u_n (z)∣=((∣z∣^n )/(∣1+z^(2n+1) ∣))≤((∣z∣^n )/(1−∣z∣^(2n+1) )), ∣z∣<1  ∃n∈N∣∀m≥n    ∣z∣   <(1/2)⇒.∣U_m  ∣≤2∣z∣^m ..ΣU_n .Cv .carΣ∣u_n ∣ cv  U_n (z)=((1/z^(n+1) )/((1/z^(2n+1) )+1))=((U_n ((1/z)))/z) ⇒∣z∣>1 Meme Raisonnement Marche  (2) (z^n /(1+z^(2n+1) ))=Σ_(k≥0) z^n (−z^(2n+1) )^k ;∀∣z∣<1  Soit S=ΣU_n ,S(z)=Σ_(n,k≥0) z^n (−z^(2n+1) )^k =Σ_(k≥0) (−z)^k Σ_(n≥0) z^(n(1+2k))   Σ_k Σ_n =Σ_n Σ_k .....(On a Cv Absolut)   Σ_(n≥0) z^(n(1+2k)) =(1/(1−z^(1+2k) ))  S=Σ_(k≥0) (((−z)^k )/(1−z^(1+2k) ))=U(−z)  ⇒s(z)=s(−z),∀∣z∣<1 S pair/pour ∣z∣>1  S(z)=((S((1/z)))/z),s(−z)=((s(−(1/z)))/(−z))=−((s((1/z)))/z)=−s(z)  Impaire

$$\mid{u}_{{n}} \left({z}\right)\mid=\frac{\mid{z}\mid^{{n}} }{\mid\mathrm{1}+{z}^{\mathrm{2}{n}+\mathrm{1}} \mid}\leqslant\frac{\mid{z}\mid^{{n}} }{\mathrm{1}−\mid{z}\mid^{\mathrm{2}{n}+\mathrm{1}} },\:\mid{z}\mid<\mathrm{1} \\ $$$$\exists{n}\in\mathbb{N}\mid\forall{m}\geqslant{n}\:\:\:\:\mid{z}\mid\:\:\:<\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow.\mid{U}_{{m}} \:\mid\leqslant\mathrm{2}\mid{z}\mid^{{m}} ..\Sigma{U}_{{n}} .{Cv}\:.{car}\Sigma\mid{u}_{{n}} \mid\:{cv} \\ $$$${U}_{{n}} \left({z}\right)=\frac{\frac{\mathrm{1}}{{z}^{{n}+\mathrm{1}} }}{\frac{\mathrm{1}}{{z}^{\mathrm{2}{n}+\mathrm{1}} }+\mathrm{1}}=\frac{{U}_{{n}} \left(\frac{\mathrm{1}}{{z}}\right)}{{z}}\:\Rightarrow\mid{z}\mid>\mathrm{1}\:{Meme}\:{Raisonnement}\:{Marche} \\ $$$$\left(\mathrm{2}\right)\:\frac{{z}^{{n}} }{\mathrm{1}+{z}^{\mathrm{2}{n}+\mathrm{1}} }=\underset{{k}\geqslant\mathrm{0}} {\sum}{z}^{{n}} \left(−{z}^{\mathrm{2}{n}+\mathrm{1}} \right)^{{k}} ;\forall\mid{z}\mid<\mathrm{1} \\ $$$${Soit}\:{S}=\Sigma{U}_{{n}} ,{S}\left({z}\right)=\underset{{n},{k}\geqslant\mathrm{0}} {\sum}{z}^{{n}} \left(−{z}^{\mathrm{2}{n}+\mathrm{1}} \right)^{{k}} =\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−{z}\right)^{{k}} \underset{{n}\geqslant\mathrm{0}} {\sum}{z}^{{n}\left(\mathrm{1}+\mathrm{2}{k}\right)} \\ $$$$\underset{{k}} {\sum}\underset{{n}} {\sum}=\underset{{n}} {\sum}\underset{{k}} {\sum}.....\left({On}\:{a}\:{Cv}\:{Absolut}\right)\: \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}{z}^{{n}\left(\mathrm{1}+\mathrm{2}{k}\right)} =\frac{\mathrm{1}}{\mathrm{1}−{z}^{\mathrm{1}+\mathrm{2}{k}} } \\ $$$${S}=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−{z}\right)^{{k}} }{\mathrm{1}−{z}^{\mathrm{1}+\mathrm{2}{k}} }={U}\left(−{z}\right) \\ $$$$\Rightarrow{s}\left({z}\right)={s}\left(−{z}\right),\forall\mid{z}\mid<\mathrm{1}\:{S}\:{pair}/{pour}\:\mid{z}\mid>\mathrm{1} \\ $$$${S}\left({z}\right)=\frac{{S}\left(\frac{\mathrm{1}}{{z}}\right)}{{z}},{s}\left(−{z}\right)=\frac{{s}\left(−\frac{\mathrm{1}}{{z}}\right)}{−{z}}=−\frac{{s}\left(\frac{\mathrm{1}}{{z}}\right)}{{z}}=−{s}\left({z}\right)\:\:{Impaire} \\ $$$$ \\ $$

Commented by Tawa11 last updated on 23/Sep/22

Great sirs

$$\mathrm{Great}\:\mathrm{sirs} \\ $$

Commented by Ar Brandon last updated on 23/Sep/22

Thanks, comrade !

Commented by Peace last updated on 25/Sep/22

withe pleasur thank  avec plaisir bonne journee

$${withe}\:{pleasur}\:{thank} \\ $$$${avec}\:{plaisir}\:{bonne}\:{journee} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com