Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 176468 by blackmamba last updated on 20/Sep/22

  ((sin (2x+18°))/(sin (2x+12°))) =(√((sin 36°)/(sin 48°)))     tan 2x = (√(tan M)) .(√(tan N))    0°<M,N<90° ⇒M+N=?°

$$\:\:\frac{\mathrm{sin}\:\left(\mathrm{2}{x}+\mathrm{18}°\right)}{\mathrm{sin}\:\left(\mathrm{2}{x}+\mathrm{12}°\right)}\:=\sqrt{\frac{\mathrm{sin}\:\mathrm{36}°}{\mathrm{sin}\:\mathrm{48}°}}\: \\ $$ $$\:\:\mathrm{tan}\:\mathrm{2}{x}\:=\:\sqrt{\mathrm{tan}\:{M}}\:.\sqrt{\mathrm{tan}\:{N}} \\ $$ $$\:\:\mathrm{0}°<{M},{N}<\mathrm{90}°\:\Rightarrow{M}+{N}=?° \\ $$

Commented byPeace last updated on 20/Sep/22

i started Withe 48 ,i see no nice Form  24 is the Right i think

$${i}\:{started}\:{Withe}\:\mathrm{48}\:,{i}\:{see}\:{no}\:{nice}\:{Form} \\ $$ $$\mathrm{24}\:{is}\:{the}\:{Right}\:{i}\:{think} \\ $$

Answered by Peace last updated on 20/Sep/22

((sin(2x)cos(18)+cos(2x)sin(18))/(sin(2x)cos(12)+cos(2x)sin(12)))=(√((sin(2.18))/(sin(2.12))))  ⇔((tg(2x)cos(18)+sin(18))/(tg(2x)cos(12)+sin(12)))=(√(((sin(36))/(sin(24)))=))  t=tg(2x)  ⇔((tg(2x)+tg(18))/(tg(2x)+tg(12)))=((cos(12))/(cos(18))).(√((sin(36))/(sin(48))))=(√((sin(36)cos^2 (12))/(cos^2 (18)sin(24))))  =(√((2sin(18)cos(18)cos^2 (12))/(cos^2 (18).2sin(24)cos(24))))  =(√((tg(18)cos^2 (12))/(2sin(12)cos(12))))=(√((tg(18))/(tg(12))))  ((t+tg(18))/(t+tg(12)))=c⇒t(1−c)=ctg(12)−tg(18)⇒tg(2x)=((ctg(12)−tg(18))/(c−1))  (((√(tg(18)tg(12)))−tg(18))/(1−(√((tg(18))/(tg(12))))))=(((√(tg(18)))((√(tg(12))−(√(tg(18)))))/( (√(tg(12)))−(√(tg(18))))).(√(tg(12)))  =(√(tg(18)tg(12)))  M+N=30

$$\frac{{sin}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{18}\right)+{cos}\left(\mathrm{2}{x}\right){sin}\left(\mathrm{18}\right)}{{sin}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{12}\right)+{cos}\left(\mathrm{2}{x}\right){sin}\left(\mathrm{12}\right)}=\sqrt{\frac{{sin}\left(\mathrm{2}.\mathrm{18}\right)}{{sin}\left(\mathrm{2}.\mathrm{12}\right)}} \\ $$ $$\Leftrightarrow\frac{{tg}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{18}\right)+{sin}\left(\mathrm{18}\right)}{{tg}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{12}\right)+\mathrm{sin}\left(\mathrm{12}\right)}=\sqrt{\frac{\mathrm{sin}\left(\mathrm{36}\right)}{\mathrm{sin}\left(\mathrm{24}\right)}=} \\ $$ $${t}={tg}\left(\mathrm{2}{x}\right) \\ $$ $$\Leftrightarrow\frac{{tg}\left(\mathrm{2}{x}\right)+{tg}\left(\mathrm{18}\right)}{{tg}\left(\mathrm{2}{x}\right)+{tg}\left(\mathrm{12}\right)}=\frac{{cos}\left(\mathrm{12}\right)}{{cos}\left(\mathrm{18}\right)}.\sqrt{\frac{{sin}\left(\mathrm{36}\right)}{{sin}\left(\mathrm{48}\right)}}=\sqrt{\frac{{sin}\left(\mathrm{36}\right){cos}^{\mathrm{2}} \left(\mathrm{12}\right)}{{cos}^{\mathrm{2}} \left(\mathrm{18}\right){sin}\left(\mathrm{24}\right)}} \\ $$ $$=\sqrt{\frac{\mathrm{2}{sin}\left(\mathrm{18}\right){cos}\left(\mathrm{18}\right){cos}^{\mathrm{2}} \left(\mathrm{12}\right)}{{cos}^{\mathrm{2}} \left(\mathrm{18}\right).\mathrm{2}{sin}\left(\mathrm{24}\right){cos}\left(\mathrm{24}\right)}} \\ $$ $$=\sqrt{\frac{{tg}\left(\mathrm{18}\right){cos}^{\mathrm{2}} \left(\mathrm{12}\right)}{\mathrm{2}{sin}\left(\mathrm{12}\right){cos}\left(\mathrm{12}\right)}}=\sqrt{\frac{{tg}\left(\mathrm{18}\right)}{{tg}\left(\mathrm{12}\right)}} \\ $$ $$\frac{{t}+{tg}\left(\mathrm{18}\right)}{{t}+{tg}\left(\mathrm{12}\right)}={c}\Rightarrow{t}\left(\mathrm{1}−{c}\right)={ctg}\left(\mathrm{12}\right)−{tg}\left(\mathrm{18}\right)\Rightarrow{tg}\left(\mathrm{2}{x}\right)=\frac{{ctg}\left(\mathrm{12}\right)−{tg}\left(\mathrm{18}\right)}{{c}−\mathrm{1}} \\ $$ $$\frac{\sqrt{{tg}\left(\mathrm{18}\right){tg}\left(\mathrm{12}\right)}−{tg}\left(\mathrm{18}\right)}{\mathrm{1}−\sqrt{\frac{{tg}\left(\mathrm{18}\right)}{{tg}\left(\mathrm{12}\right)}}}=\frac{\sqrt{{tg}\left(\mathrm{18}\right)}\left(\sqrt{{tg}\left(\mathrm{12}\right.}−\sqrt{{tg}\left(\mathrm{18}\right)}\right)}{\:\sqrt{{tg}\left(\mathrm{12}\right)}−\sqrt{{tg}\left(\mathrm{18}\right)}}.\sqrt{{tg}\left(\mathrm{12}\right)} \\ $$ $$=\sqrt{{tg}\left(\mathrm{18}\right){tg}\left(\mathrm{12}\right)} \\ $$ $${M}+{N}=\mathrm{30} \\ $$ $$ \\ $$ $$ \\ $$

Commented byblackmamba last updated on 26/Sep/22

wrong

$${wrong} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com