Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176453 by mnjuly1970 last updated on 19/Sep/22

     If ,  α , β , γ ∈ ( 0  ,  1 )  ,  then             prove  that :               (√((1−^ α ).(1−^ β ). (1−^ γ ))) +(√(α^ .β^ .γ^ ))  < 1

$$ \\ $$ $$\:\:\:{If}\:,\:\:\alpha\:,\:\beta\:,\:\gamma\:\in\:\left(\:\mathrm{0}\:\:,\:\:\mathrm{1}\:\right)\:\:,\:\:{then}\: \\ $$ $$\:\:\:\: \\ $$ $$\:\:\:\:{prove}\:\:{that}\::\:\: \\ $$ $$ \\ $$ $$\:\:\:\:\:\:\:\:\:\sqrt{\left(\mathrm{1}\overset{} {−}\alpha\:\right).\left(\mathrm{1}\overset{} {−}\beta\:\right).\:\left(\mathrm{1}\overset{} {−}\gamma\:\right)}\:+\sqrt{\overset{} {\alpha}.\overset{} {\beta}.\overset{} {\gamma}}\:\:<\:\mathrm{1} \\ $$ $$\:\:\:\:\:\: \\ $$

Answered by ajfour last updated on 19/Sep/22

say α=sin^2 θ  β=sin^2 φ , γ=sin^2 δ  l.h.s.=cos θcos φcos δ                  +sin θsin φsin δ  =((cos θ)/2){cos (φ+δ)+cos (φ−δ)}    +((sin θ)/2){cos (φ−δ)−cos (φ+δ)}  =((cos (φ+δ))/2)(cos θ−sin θ)      +((cos (φ−δ))/2)(cos θ+sin θ)  =((cos (φ+δ)cos (θ+(π/4)))/( (√2)))        +((cos (φ−δ)sin (θ+(π/4)))/( (√2)))  say  cos (φ+δ)=A            cos (φ−δ)=B  l.h.s.=(√((A^2 /2)+(B^2 /2)))sin (θ+(π/4)+tan^(−1) (A/B))     < (√((A^2 +B^2 )/2)) < (√((1/2)+(1/2))) (=1)  as  A<1  , B<1

$${say}\:\alpha=\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$ $$\beta=\mathrm{sin}\:^{\mathrm{2}} \phi\:,\:\gamma=\mathrm{sin}\:^{\mathrm{2}} \delta \\ $$ $${l}.{h}.{s}.=\mathrm{cos}\:\theta\mathrm{cos}\:\phi\mathrm{cos}\:\delta \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{sin}\:\theta\mathrm{sin}\:\phi\mathrm{sin}\:\delta \\ $$ $$=\frac{\mathrm{cos}\:\theta}{\mathrm{2}}\left\{\mathrm{cos}\:\left(\phi+\delta\right)+\mathrm{cos}\:\left(\phi−\delta\right)\right\} \\ $$ $$\:\:+\frac{\mathrm{sin}\:\theta}{\mathrm{2}}\left\{\mathrm{cos}\:\left(\phi−\delta\right)−\mathrm{cos}\:\left(\phi+\delta\right)\right\} \\ $$ $$=\frac{\mathrm{cos}\:\left(\phi+\delta\right)}{\mathrm{2}}\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$ $$\:\:\:\:+\frac{\mathrm{cos}\:\left(\phi−\delta\right)}{\mathrm{2}}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right) \\ $$ $$=\frac{\mathrm{cos}\:\left(\phi+\delta\right)\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{4}}\right)}{\:\sqrt{\mathrm{2}}} \\ $$ $$\:\:\:\:\:\:+\frac{\mathrm{cos}\:\left(\phi−\delta\right)\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{4}}\right)}{\:\sqrt{\mathrm{2}}} \\ $$ $${say}\:\:\mathrm{cos}\:\left(\phi+\delta\right)={A} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:\left(\phi−\delta\right)={B} \\ $$ $${l}.{h}.{s}.=\sqrt{\frac{{A}^{\mathrm{2}} }{\mathrm{2}}+\frac{{B}^{\mathrm{2}} }{\mathrm{2}}}\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{4}}+\mathrm{tan}^{−\mathrm{1}} \frac{{A}}{{B}}\right) \\ $$ $$\:\:\:<\:\sqrt{\frac{{A}^{\mathrm{2}} +{B}^{\mathrm{2}} }{\mathrm{2}}}\:<\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}}\:\left(=\mathrm{1}\right) \\ $$ $${as}\:\:{A}<\mathrm{1}\:\:,\:{B}<\mathrm{1} \\ $$

Commented byajfour last updated on 19/Sep/22

https://youtu.be/86aXbrp2ZG0

Commented byajfour last updated on 19/Sep/22

A small experimental educational   video of mine on youtube..

$${A}\:{small}\:{experimental}\:{educational} \\ $$ $$\:{video}\:{of}\:{mine}\:{on}\:{youtube}.. \\ $$

Commented bymnjuly1970 last updated on 19/Sep/22

bravo sir ajfor ....    i will see your youtube ..certainly

$${bravo}\:{sir}\:{ajfor}\:.... \\ $$ $$\:\:{i}\:{will}\:{see}\:{your}\:{youtube}\:..{certainly} \\ $$

Commented byTawa11 last updated on 20/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 19/Sep/22

for 0<x<1: (√x)<(x)^(1/3)   G.M.≤A.M.    (√((1−α)(1−β)(1−γ)))+(√(αβγ))  <(((1−α)(1−β)(1−γ)))^(1/3) +((αβγ))^(1/3)   ≤((1−α+1−β+1−γ)/3)+((α+β+γ)/3)  =(3/3)=1

$${for}\:\mathrm{0}<{x}<\mathrm{1}:\:\sqrt{{x}}<\sqrt[{\mathrm{3}}]{{x}} \\ $$ $${G}.{M}.\leqslant{A}.{M}. \\ $$ $$ \\ $$ $$\sqrt{\left(\mathrm{1}−\alpha\right)\left(\mathrm{1}−\beta\right)\left(\mathrm{1}−\gamma\right)}+\sqrt{\alpha\beta\gamma} \\ $$ $$<\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\alpha\right)\left(\mathrm{1}−\beta\right)\left(\mathrm{1}−\gamma\right)}+\sqrt[{\mathrm{3}}]{\alpha\beta\gamma} \\ $$ $$\leqslant\frac{\mathrm{1}−\alpha+\mathrm{1}−\beta+\mathrm{1}−\gamma}{\mathrm{3}}+\frac{\alpha+\beta+\gamma}{\mathrm{3}} \\ $$ $$=\frac{\mathrm{3}}{\mathrm{3}}=\mathrm{1} \\ $$

Commented bymnjuly1970 last updated on 19/Sep/22

bravo sir W...thanks alot

$${bravo}\:{sir}\:{W}...{thanks}\:{alot} \\ $$

Commented byTawa11 last updated on 20/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com