Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 176293 by mokys last updated on 15/Sep/22

find n^(th)  formolla of <0,4,9,16,25>

$${find}\:{n}^{{th}} \:{formolla}\:{of}\:<\mathrm{0},\mathrm{4},\mathrm{9},\mathrm{16},\mathrm{25}> \\ $$

Answered by Frix last updated on 16/Sep/22

for <0, 4, 9, 16, 25> we get the polynomial  a_n =−(((n−1)(n^3 −13n^2 +34n−120))/(24))

$$\mathrm{for}\:<\mathrm{0},\:\mathrm{4},\:\mathrm{9},\:\mathrm{16},\:\mathrm{25}>\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{polynomial} \\ $$ $${a}_{{n}} =−\frac{\left({n}−\mathrm{1}\right)\left({n}^{\mathrm{3}} −\mathrm{13}{n}^{\mathrm{2}} +\mathrm{34}{n}−\mathrm{120}\right)}{\mathrm{24}} \\ $$

Answered by Rasheed.Sindhi last updated on 16/Sep/22

p(n)= { ((n^2 −1 if n=1)),((n^2  otherwise)) :}  n∈{1,2,3,...}

$${p}\left({n}\right)=\begin{cases}{{n}^{\mathrm{2}} −\mathrm{1}\:{if}\:{n}=\mathrm{1}}\\{{n}^{\mathrm{2}} \:{otherwise}}\end{cases}\:\:{n}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...\right\} \\ $$

Answered by Rasheed.Sindhi last updated on 16/Sep/22

      ★ determinant (((A Simple Formula_(of nth term_(FOR THE SEQUENCE_(0,4,9,16,25,...) ) ) )))★   determinant (((   determinant (((a_n =n^2 −⌊(1/n)⌋  ; n∈{1,2,3,...})))_ ^ )))

$$\:\:\:\:\:\:\bigstar\begin{array}{|c|}{\underset{\underset{\underset{\mathrm{0},\mathrm{4},\mathrm{9},\mathrm{16},\mathrm{25},...} {\boldsymbol{\mathcal{F}}\mathcal{OR}\:\mathcal{THE}\:\mathcal{SEQUENCE}}} {\boldsymbol{{of}}\:\boldsymbol{{nth}}\:\boldsymbol{{term}}}} {\mathbb{A}\:\mathbb{S}\boldsymbol{\mathrm{imple}}\:\mathbb{F}\boldsymbol{\mathrm{ormula}}}}\\\hline\end{array}\bigstar \\ $$ $$\begin{array}{|c|}{\:\:\begin{array}{|c|}{{a}_{{n}} ={n}^{\mathrm{2}} −\lfloor\frac{\mathrm{1}}{{n}}\rfloor\:\:;\:{n}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...\right\}}\\\hline\end{array}_{} ^{} }\\\hline\end{array} \\ $$

Commented bymr W last updated on 16/Sep/22

or  a_n =sign(n−1)n^2

$${or} \\ $$ $${a}_{{n}} ={sign}\left({n}−\mathrm{1}\right){n}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com