Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176276 by cortano1 last updated on 15/Sep/22

coeff of x^2  from     [6+8x−(3/2)x^2  ]^5

$$\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{from}\: \\ $$$$\:\:\left[\mathrm{6}+\mathrm{8x}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:\right]^{\mathrm{5}} \: \\ $$

Answered by mr W last updated on 15/Sep/22

C_1 ^5 ×(−(3/2))×6^4 +C_2 ^5 ×8^2 ×6^3 =128520

$${C}_{\mathrm{1}} ^{\mathrm{5}} ×\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)×\mathrm{6}^{\mathrm{4}} +{C}_{\mathrm{2}} ^{\mathrm{5}} ×\mathrm{8}^{\mathrm{2}} ×\mathrm{6}^{\mathrm{3}} =\mathrm{128520} \\ $$

Commented by cortano1 last updated on 16/Sep/22

nice .

$$\mathrm{nice}\:.\: \\ $$

Commented by cortano1 last updated on 16/Sep/22

it is from form    Σ_(k=0) ^5   ((5),(k) ) (6+8x)^(5−k) (−(3/2)x^2 )^k  ?

$$\mathrm{it}\:\mathrm{is}\:\mathrm{from}\:\mathrm{form}\: \\ $$$$\:\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{5}} {\sum}}\:\begin{pmatrix}{\mathrm{5}}\\{\mathrm{k}}\end{pmatrix}\:\left(\mathrm{6}+\mathrm{8x}\right)^{\mathrm{5}−\mathrm{k}} \left(−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{k}} \:? \\ $$

Commented by mr W last updated on 16/Sep/22

no, i applied no formula.  to get x^2  we need  1. one term −(3/2)x^2  and 4 terms 6,       to select the term −(3/2)x^2 , there are       C_1 ^5  ways, therefore we get       C_1 ^5 ×(−(3/2))×6^4 .  2.  two terms 8x and 3 terms 6,       to select two terms 8x , there are       C_2 ^5  ways, therefore we get       C_2 ^5 ×8^2 ×6^3 .  totally we get  C_1 ^5 ×(−(3/2))×6^4 +C_2 ^5 ×8^2 ×6^3

$${no},\:{i}\:{applied}\:{no}\:{formula}. \\ $$$${to}\:{get}\:{x}^{\mathrm{2}} \:{we}\:{need} \\ $$$$\mathrm{1}.\:{one}\:{term}\:−\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} \:{and}\:\mathrm{4}\:{terms}\:\mathrm{6}, \\ $$$$\:\:\:\:\:{to}\:{select}\:{the}\:{term}\:−\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} ,\:{there}\:{are} \\ $$$$\:\:\:\:\:{C}_{\mathrm{1}} ^{\mathrm{5}} \:{ways},\:{therefore}\:{we}\:{get} \\ $$$$\:\:\:\:\:{C}_{\mathrm{1}} ^{\mathrm{5}} ×\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)×\mathrm{6}^{\mathrm{4}} . \\ $$$$\mathrm{2}.\:\:{two}\:{terms}\:\mathrm{8}{x}\:{and}\:\mathrm{3}\:{terms}\:\mathrm{6}, \\ $$$$\:\:\:\:\:{to}\:{select}\:{two}\:{terms}\:\mathrm{8}{x}\:,\:{there}\:{are} \\ $$$$\:\:\:\:\:{C}_{\mathrm{2}} ^{\mathrm{5}} \:{ways},\:{therefore}\:{we}\:{get} \\ $$$$\:\:\:\:\:{C}_{\mathrm{2}} ^{\mathrm{5}} ×\mathrm{8}^{\mathrm{2}} ×\mathrm{6}^{\mathrm{3}} . \\ $$$${totally}\:{we}\:{get} \\ $$$${C}_{\mathrm{1}} ^{\mathrm{5}} ×\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)×\mathrm{6}^{\mathrm{4}} +{C}_{\mathrm{2}} ^{\mathrm{5}} ×\mathrm{8}^{\mathrm{2}} ×\mathrm{6}^{\mathrm{3}} \\ $$

Commented by Tawa11 last updated on 18/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 16/Sep/22

(6+8x−(3/2)x^2 )^5   =Σ_(0≤a,b,c≤5) ^(a+b+c=5)  (((    5)),((a,b,c)) )×6^a ×(8x)^b ×(−(3/2)x^2 )^c   to get x^2  term: b+2c=2  ⇒b=0, c=1, a=4 or  ⇒b=2, c=0, a=3.  the coeff. of x^2  term is:   (((    5)),((4,0,1)) )×6^4 ×(8)^0 ×(−(3/2))^1 + (((    5)),((3,2,0)) )×6^3 ×(8)^2 ×(−(3/2))^0   =((5!)/(4!0!1!))×6^4 ×(8)^0 ×(−(3/2))^1 +((5!)/(3!2!0!))×6^3 ×(8)^2 ×(−(3/2))^0   =128520

$$\left(\mathrm{6}+\mathrm{8}{x}−\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} \right)^{\mathrm{5}} \\ $$$$=\underset{\mathrm{0}\leqslant{a},{b},{c}\leqslant\mathrm{5}} {\overset{{a}+{b}+{c}=\mathrm{5}} {\sum}}\begin{pmatrix}{\:\:\:\:\mathrm{5}}\\{{a},{b},{c}}\end{pmatrix}×\mathrm{6}^{{a}} ×\left(\mathrm{8}{x}\right)^{{b}} ×\left(−\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} \right)^{{c}} \\ $$$${to}\:{get}\:{x}^{\mathrm{2}} \:{term}:\:{b}+\mathrm{2}{c}=\mathrm{2} \\ $$$$\Rightarrow{b}=\mathrm{0},\:{c}=\mathrm{1},\:{a}=\mathrm{4}\:{or} \\ $$$$\Rightarrow{b}=\mathrm{2},\:{c}=\mathrm{0},\:{a}=\mathrm{3}. \\ $$$${the}\:{coeff}.\:{of}\:{x}^{\mathrm{2}} \:{term}\:{is}: \\ $$$$\begin{pmatrix}{\:\:\:\:\mathrm{5}}\\{\mathrm{4},\mathrm{0},\mathrm{1}}\end{pmatrix}×\mathrm{6}^{\mathrm{4}} ×\left(\mathrm{8}\right)^{\mathrm{0}} ×\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{1}} +\begin{pmatrix}{\:\:\:\:\mathrm{5}}\\{\mathrm{3},\mathrm{2},\mathrm{0}}\end{pmatrix}×\mathrm{6}^{\mathrm{3}} ×\left(\mathrm{8}\right)^{\mathrm{2}} ×\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{0}} \\ $$$$=\frac{\mathrm{5}!}{\mathrm{4}!\mathrm{0}!\mathrm{1}!}×\mathrm{6}^{\mathrm{4}} ×\left(\mathrm{8}\right)^{\mathrm{0}} ×\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{1}} +\frac{\mathrm{5}!}{\mathrm{3}!\mathrm{2}!\mathrm{0}!}×\mathrm{6}^{\mathrm{3}} ×\left(\mathrm{8}\right)^{\mathrm{2}} ×\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{0}} \\ $$$$=\mathrm{128520} \\ $$

Commented by Tawa11 last updated on 25/Sep/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com