Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 175740 by daus last updated on 06/Sep/22

Answered by Ar Brandon last updated on 06/Sep/22

S(t)=Σ_(n=1) ^∞ t^n =(t/(1−t)) , ∣t∣<1  ⇒S ′(t)=Σ_(n=1) ^∞ nt^(n−1) =(1/((1−t)^2 ))  ⇒Σ_(n=1) ^∞ nt^n =(t/((1−t)^2 )) , t=((1/5))  ⇒Σ_(n=1) ^∞ (n/5^n )=((1/5)/((1−(1/5))^2 ))=(1/5)×((5/4))^2 =(5/(16))

$${S}\left({t}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{t}^{{n}} =\frac{{t}}{\mathrm{1}−{t}}\:,\:\mid{t}\mid<\mathrm{1} \\ $$$$\Rightarrow{S}\:'\left({t}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{nt}^{{n}−\mathrm{1}} =\frac{\mathrm{1}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{nt}^{{n}} =\frac{{t}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }\:,\:{t}=\left(\frac{\mathrm{1}}{\mathrm{5}}\right) \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{\mathrm{5}^{{n}} }=\frac{\frac{\mathrm{1}}{\mathrm{5}}}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{5}}×\left(\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} =\frac{\mathrm{5}}{\mathrm{16}} \\ $$

Answered by Ar Brandon last updated on 06/Sep/22

S=(1/5)+(2/5^2 )+(3/5^3 )+(4/5^4 )+(5/5^5 )+(6/5^6 )+∙∙∙  (1/5)S=(1/5^2 )+(2/5^3 )+(3/5^4 )+(4/5^5 )+(5/5^6 )+(6/5^7 )+∙∙∙  S−(1/5)S=(1/5)+(1/5^2 )+(1/5^3 )+(1/5^4 )+(1/5^5 )+∙∙∙  (4/5)S=((((1/5)))/(1−(1/5)))=(1/5)×(5/4)=(1/4)  ⇒S=(5/(16))

$${S}=\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{4}}{\mathrm{5}^{\mathrm{4}} }+\frac{\mathrm{5}}{\mathrm{5}^{\mathrm{5}} }+\frac{\mathrm{6}}{\mathrm{5}^{\mathrm{6}} }+\centerdot\centerdot\centerdot \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}{S}=\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{2}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{3}}{\mathrm{5}^{\mathrm{4}} }+\frac{\mathrm{4}}{\mathrm{5}^{\mathrm{5}} }+\frac{\mathrm{5}}{\mathrm{5}^{\mathrm{6}} }+\frac{\mathrm{6}}{\mathrm{5}^{\mathrm{7}} }+\centerdot\centerdot\centerdot \\ $$$${S}−\frac{\mathrm{1}}{\mathrm{5}}{S}=\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{5}} }+\centerdot\centerdot\centerdot \\ $$$$\frac{\mathrm{4}}{\mathrm{5}}{S}=\frac{\left(\frac{\mathrm{1}}{\mathrm{5}}\right)}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}}=\frac{\mathrm{1}}{\mathrm{5}}×\frac{\mathrm{5}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{S}=\frac{\mathrm{5}}{\mathrm{16}} \\ $$

Commented by daus last updated on 07/Sep/22

how to get a RHS  of the  third line?

$${how}\:{to}\:{get}\:{a}\:{RHS}\:\:{of}\:{the}\:\:{third}\:{line}? \\ $$

Commented by Ar Brandon last updated on 07/Sep/22

You do the subtraction using the values  from the 2 previous lines. That is,  (1/5)+((2/5^2 )−(1/5^2 ))+((3/5^3 )−(2/5^3 ))+((4/5^4 )−(3/5^4 ))+∙∙∙

$$\mathrm{You}\:\mathrm{do}\:\mathrm{the}\:\mathrm{subtraction}\:\mathrm{using}\:\mathrm{the}\:\mathrm{values} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{2}\:\mathrm{previous}\:\mathrm{lines}.\:\mathrm{That}\:\mathrm{is}, \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}+\left(\frac{\mathrm{2}}{\mathrm{5}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }\right)+\left(\frac{\mathrm{3}}{\mathrm{5}^{\mathrm{3}} }−\frac{\mathrm{2}}{\mathrm{5}^{\mathrm{3}} }\right)+\left(\frac{\mathrm{4}}{\mathrm{5}^{\mathrm{4}} }−\frac{\mathrm{3}}{\mathrm{5}^{\mathrm{4}} }\right)+\centerdot\centerdot\centerdot \\ $$

Commented by peter frank last updated on 06/Sep/22

thanks

$$\mathrm{thanks} \\ $$

Commented by Tawa11 last updated on 15/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by Rasheed.Sindhi last updated on 06/Sep/22

S=(1/5)+(2/5^2 )+(3/5^3 )+(4/5^4 )+(5/5^5 )+(6/5^6 )+∙∙∙  5S=(1/1)+(2/5)+(3/5^2 )+(4/5^3 )+(5/5^4 )+(6/5^5 )+∙∙∙  5S−S=(1/1)+(1/5)+(1/5^2 )+(1/5^3 )+...  4S=(1/(1−(1/5)))=(5/4)  S=(5/(16))

$${S}=\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{4}}{\mathrm{5}^{\mathrm{4}} }+\frac{\mathrm{5}}{\mathrm{5}^{\mathrm{5}} }+\frac{\mathrm{6}}{\mathrm{5}^{\mathrm{6}} }+\centerdot\centerdot\centerdot \\ $$$$\mathrm{5}{S}=\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{3}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{4}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{5}}{\mathrm{5}^{\mathrm{4}} }+\frac{\mathrm{6}}{\mathrm{5}^{\mathrm{5}} }+\centerdot\centerdot\centerdot \\ $$$$\mathrm{5}{S}−{S}=\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }+... \\ $$$$\mathrm{4}{S}=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}}=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${S}=\frac{\mathrm{5}}{\mathrm{16}} \\ $$

Commented by peter frank last updated on 06/Sep/22

thanks

$$\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com