Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 175042 by peter frank last updated on 17/Aug/22

Answered by Frix last updated on 18/Aug/22

∫((a^2 sin^2  x +b^2 cos^2  x)/(a^4 sin^4  x +b^4 cos^4  x))dx=  =∫(((1+tan^2  x)(b^2 +a^2 tan^2  x))/(b^4 +a^4 tan^4  x))dx=  =∫((b^2 +a^2 tan^2  x)/((b^4 +a^4 tan^4  x)))dtan x=  =∫((a^2 t^2 +b^2 )/(a^4 t^4 +b^4 ))dt=  =(1/2)∫(dt/(a^2 t^2 −ab(√2)t+b^2 ))+(1/2)∫(dt/(a^2 t^2 +ab(√2)t+b^2 ))=  =((√2)/(2ab))(tan^(−1)  ((a(√2)t−b)/b)+tan^(−1)  ((a(√2)t+b)/b))=  =−((√2)/(2ab))tan^(−1)  ((ab(√2)t)/(a^2 t^2 −b^2 )) =  =−((√2)/(2ab))tan^(−1)  ((ab(√2)sin x cos x)/(a^2 sin^2  x −b^2 cos^2  x)) +C

$$\int\frac{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:{x}\:+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:{x}}{{a}^{\mathrm{4}} \mathrm{sin}^{\mathrm{4}} \:{x}\:+{b}^{\mathrm{4}} \mathrm{cos}^{\mathrm{4}} \:{x}}{dx}= \\ $$$$=\int\frac{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}\right)\left({b}^{\mathrm{2}} +{a}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:{x}\right)}{{b}^{\mathrm{4}} +{a}^{\mathrm{4}} \mathrm{tan}^{\mathrm{4}} \:{x}}{dx}= \\ $$$$=\int\frac{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:{x}}{\left({b}^{\mathrm{4}} +{a}^{\mathrm{4}} \mathrm{tan}^{\mathrm{4}} \:{x}\right)}{d}\mathrm{tan}\:{x}= \\ $$$$=\int\frac{{a}^{\mathrm{2}} {t}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{a}^{\mathrm{4}} {t}^{\mathrm{4}} +{b}^{\mathrm{4}} }{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} −{ab}\sqrt{\mathrm{2}}{t}+{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} +{ab}\sqrt{\mathrm{2}}{t}+{b}^{\mathrm{2}} }= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}{ab}}\left(\mathrm{tan}^{−\mathrm{1}} \:\frac{{a}\sqrt{\mathrm{2}}{t}−{b}}{{b}}+\mathrm{tan}^{−\mathrm{1}} \:\frac{{a}\sqrt{\mathrm{2}}{t}+{b}}{{b}}\right)= \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}{ab}}\mathrm{tan}^{−\mathrm{1}} \:\frac{{ab}\sqrt{\mathrm{2}}{t}}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:= \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}{ab}}\mathrm{tan}^{−\mathrm{1}} \:\frac{{ab}\sqrt{\mathrm{2}}\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:{x}\:−{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:{x}}\:+{C} \\ $$

Commented by peter frank last updated on 18/Aug/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by Tawa11 last updated on 20/Aug/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com