Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 17463 by alex041103 last updated on 06/Jul/17

Evaluate ∫_0 ^1   ((x^4 (1−x)^4 )/(1+x^2 )) dx.

$${Evaluate}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\frac{{x}^{\mathrm{4}} \left(\mathrm{1}−{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}. \\ $$

Answered by ajfour last updated on 06/Jul/17

((22)/7)−π .

$$\frac{\mathrm{22}}{\mathrm{7}}−\pi\:. \\ $$

Commented by alex041103 last updated on 06/Jul/17

True. Isn′t that beautifull.(Sorry,  if I made a mistake somewhere. I′m   only 13 years old.)

$$\mathrm{T}{rue}.\:{Isn}'{t}\:{that}\:{beautifull}.\left(\mathrm{Sorry},\right. \\ $$$$\mathrm{if}\:\mathrm{I}\:\mathrm{made}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{somewhere}.\:\mathrm{I}'\mathrm{m}\: \\ $$$$\left.\mathrm{only}\:\mathrm{13}\:\mathrm{years}\:\mathrm{old}.\right) \\ $$

Commented by ajfour last updated on 06/Jul/17

excellent expression!

$$\mathrm{excellent}\:\mathrm{expression}!\: \\ $$

Answered by alex041103 last updated on 17/Jul/17

First  (1−x)^4 =1−4x+6x^2 −4x^3 +x^4   We can now do long division  x^4 (((1−x)^4 )/(1+x^2 ))=x^4 (x^2 −4x+5−(4/(1+x^2 )))=  =x^6 −4x^5 +5x^4 −4(x^4 /(1+x^2 ))=   (again long division)  =x^6 −4x^5 +5x^4 −4x^2 +4−4(1/(1+x^2 ))  And now we integrate and evaluate  ⇒∫_0 ^( 1) ((x^4 (1−x)^4 )/(1+x^2 ))dx=((22)/7)−π  note:  4∫_0 ^( 1) (1/(1+x^2 ))dx=4[tan^(−1) (x)]_0 ^1 =4(π/4)=π

$${First} \\ $$$$\left(\mathrm{1}−{x}\right)^{\mathrm{4}} =\mathrm{1}−\mathrm{4}{x}+\mathrm{6}{x}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{3}} +{x}^{\mathrm{4}} \\ $$$${We}\:{can}\:{now}\:{do}\:{long}\:{division} \\ $$$${x}^{\mathrm{4}} \frac{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }={x}^{\mathrm{4}} \left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{5}−\frac{\mathrm{4}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)= \\ $$$$={x}^{\mathrm{6}} −\mathrm{4}{x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} −\mathrm{4}\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }=\:\:\:\left({again}\:{long}\:{division}\right) \\ $$$$={x}^{\mathrm{6}} −\mathrm{4}{x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}−\mathrm{4}\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${And}\:{now}\:{we}\:{integrate}\:{and}\:{evaluate} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{4}} \left(\mathrm{1}−{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{22}}{\mathrm{7}}−\pi \\ $$$${note}: \\ $$$$\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\mathrm{4}\left[{tan}^{−\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{4}\frac{\pi}{\mathrm{4}}=\pi \\ $$

Commented by alex041103 last updated on 18/Jul/17

dividion of polinomials

$${dividion}\:{of}\:{polinomials} \\ $$

Commented by alex041103 last updated on 19/Jul/17

You′ll dind some info at   goo.gl/Qo7V6H

$${You}'{ll}\:{dind}\:{some}\:{info}\:{at}\: \\ $$$$\boldsymbol{\mathrm{goo}}.\boldsymbol{\mathrm{gl}}/\boldsymbol{\mathrm{Qo}}\mathrm{7}\boldsymbol{\mathrm{V}}\mathrm{6}\boldsymbol{\mathrm{H}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com