Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173948 by dragan91 last updated on 21/Jul/22

Commented by dragan91 last updated on 21/Jul/22

Value of Angle ?

$$\mathrm{Value}\:\mathrm{of}\:\mathrm{Angle}\:? \\ $$

Commented by a.lgnaoui last updated on 22/Jul/22

2α+β=(π/2)   and     x+α=(π/2)  cos 2α=(1/2)      2α=(π/3)  α=(π/6)  x=(π/2)−(π/6)           x=(π/3)

$$\mathrm{2}\alpha+\beta=\frac{\pi}{\mathrm{2}}\:\:\:{and}\:\:\:\:\:{x}+\alpha=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\mathrm{2}\alpha=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\mathrm{2}\alpha=\frac{\pi}{\mathrm{3}}\:\:\alpha=\frac{\pi}{\mathrm{6}} \\ $$$${x}=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{6}}\:\:\:\:\:\:\:\:\:\:\:{x}=\frac{\pi}{\mathrm{3}} \\ $$

Commented by Tawa11 last updated on 22/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 23/Jul/22

how are you sure that cos 2α=(1/2)?  2α+β=(π/2) is not true!  (wrongly marked in the question)  you have ignored the dotted line.

$${how}\:{are}\:{you}\:{sure}\:{that}\:\mathrm{cos}\:\mathrm{2}\alpha=\frac{\mathrm{1}}{\mathrm{2}}? \\ $$$$\mathrm{2}\alpha+\beta=\frac{\pi}{\mathrm{2}}\:{is}\:{not}\:{true}! \\ $$$$\left({wrongly}\:{marked}\:{in}\:{the}\:{question}\right) \\ $$$${you}\:{have}\:{ignored}\:{the}\:{dotted}\:{line}. \\ $$

Answered by mr W last updated on 23/Jul/22

Commented by mr W last updated on 23/Jul/22

1^2 +(2−r)^2 =(1+r)^2   ⇒r=(2/3)  tan θ=((2−r)/1)=(4/3)=((2 tan (θ/2))/(1−tan^2  (θ/2)))  2 tan^2  (θ/2)+3 tan (θ/2)−2=0  (2 tan (θ/2)−1)(tan (θ/2)+2)=0  ⇒tan (θ/2)=(1/2) ⇒sin (θ/2)=(1/( (√5)))    2α+θ=π  ⇒α=(π/2)−(θ/2)  2β+((π/2)−θ)=π  ⇒β=(π/4)+(θ/2)  γ=π−α−β=π−(π/2)+(θ/2)−(π/4)−(θ/2)=(π/4)  ⇒EF=DE=2−OD=2−2×1×cos α              =2−2 cos ((π/2)−(θ/2))              =2−2 sin (θ/2)              =2(1−(1/( (√5))))=((2((√5)−1))/( (√5)))  tan x=((OE)/(EF))=((2×(√5))/(2((√5)−1)))=((5+(√5))/4)  ⇒x=tan^(−1) ((5+(√5))/4)≈61.07°

$$\mathrm{1}^{\mathrm{2}} +\left(\mathrm{2}−{r}\right)^{\mathrm{2}} =\left(\mathrm{1}+{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{2}−{r}}{\mathrm{1}}=\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{2}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}} \\ $$$$\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}+\mathrm{3}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}−\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{2}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}−\mathrm{1}\right)\left(\mathrm{tan}\:\frac{\theta}{\mathrm{2}}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$ \\ $$$$\mathrm{2}\alpha+\theta=\pi \\ $$$$\Rightarrow\alpha=\frac{\pi}{\mathrm{2}}−\frac{\theta}{\mathrm{2}} \\ $$$$\mathrm{2}\beta+\left(\frac{\pi}{\mathrm{2}}−\theta\right)=\pi \\ $$$$\Rightarrow\beta=\frac{\pi}{\mathrm{4}}+\frac{\theta}{\mathrm{2}} \\ $$$$\gamma=\pi−\alpha−\beta=\pi−\frac{\pi}{\mathrm{2}}+\frac{\theta}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}=\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow{EF}={DE}=\mathrm{2}−{OD}=\mathrm{2}−\mathrm{2}×\mathrm{1}×\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}−\mathrm{2}\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\theta}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}−\mathrm{2}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)=\frac{\mathrm{2}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\:\sqrt{\mathrm{5}}} \\ $$$$\mathrm{tan}\:{x}=\frac{{OE}}{{EF}}=\frac{\mathrm{2}×\sqrt{\mathrm{5}}}{\mathrm{2}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}=\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\Rightarrow{x}=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{4}}\approx\mathrm{61}.\mathrm{07}° \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com