Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 171552 by 0731619 last updated on 17/Jun/22

Answered by alephzero last updated on 17/Jun/22

1−x^3  ∼ −x^3   ((−x^3 ))^(1/3)  = −(x^3 )^(1/3)  = −x  lim_(x→∞) x+(−x) = 0  ⇒ lim_(x→∞) x+((1−x^3 ))^(1/3)  = 0

$$\mathrm{1}−{x}^{\mathrm{3}} \:\sim\:−{x}^{\mathrm{3}} \\ $$$$\sqrt[{\mathrm{3}}]{−{x}^{\mathrm{3}} }\:=\:−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} }\:=\:−{x} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{x}+\left(−{x}\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{x}+\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}^{\mathrm{3}} }\:=\:\mathrm{0} \\ $$

Answered by Mathematification last updated on 17/Jun/22

Lim_(x→∞) (x +^3 (√(1−x^3 )))  = Lim_(x→0) (((1+^3 (√(x^3 −1))))/x)) =^(Lhopital)   ((3x^2 )/((x^3 −1)^(2/3) )) = 0

$$\mathrm{Lim}_{\mathrm{x}\rightarrow\infty} \left(\mathrm{x}\:+\:^{\mathrm{3}} \sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{3}} }\right)\:\:=\:\mathrm{Lim}_{\mathrm{x}\rightarrow\mathrm{0}} \left(\frac{\left.\mathrm{1}+^{\mathrm{3}} \sqrt{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}\right)}{\mathrm{x}}\right)\:\overset{\mathrm{Lhopital}} {=}\:\:\frac{\mathrm{3x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{3}} −\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\:\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com