Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 171455 by mokys last updated on 15/Jun/22

find the sum of z = sinx + sin2x+sin3x+......+sinnx

$${find}\:{the}\:{sum}\:{of}\:{z}\:=\:{sinx}\:+\:{sin}\mathrm{2}{x}+{sin}\mathrm{3}{x}+......+{sinnx}\: \\ $$

Commented by mr W last updated on 15/Jun/22

z=((cos (x/2)−cos (n+(1/2))x)/( 2 sin (x/2)))

$${z}=\frac{\mathrm{cos}\:\frac{{x}}{\mathrm{2}}−\mathrm{cos}\:\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}}{\:\mathrm{2}\:\mathrm{sin}\:\frac{{x}}{\mathrm{2}}} \\ $$

Answered by mr W last updated on 16/Jun/22

let A=Σ_(k=1) ^n cos kx  let B=Σ_(k=1) ^n sin kx  A+iB=Σ_(k=1) ^n (cos kx+i sin kx)  A+iB=Σ_(k=1) ^n e^(ikx) =((e^(i(n+1)x) −1)/(e^(ix) −1))  A+iB=((cos (n+1)x−1+i sin (n+1)x)/(cos x−1+i sin x))  A+iB=(([cos (n+1)x−1+i sin (n+1)x](cos x−1−i sin x))/((cos x−1+i sin x)(cos x−1−i sin x)))  A+iB=(([cos (n+1)x−1](cos x−1)+sin (n+1)x sin x+i{sin (n+1)x (cos x−1)−[cos (n+1)x−1]sin x})/( 4 sin^2  (x/2)))  ⇒A=(([cos (n+1)x−1](cos x−1)+sin (n+1)x sin x)/( 4 sin^2  (x/2)))  ⇒A=((sin (n+(1/2))x−sin (x/2))/( 2 sin (x/2)))  B=((sin (n+1)x (cos x−1)−[cos (n+1)x−1]sin x)/( 4 sin^2  (x/2)))  ⇒B=((cos (x/2)−cos (n+(1/2))x)/( 2 sin (x/2)))

$${let}\:{A}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}\:{kx} \\ $$$${let}\:{B}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{sin}\:{kx} \\ $$$${A}+{iB}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{cos}\:{kx}+{i}\:\mathrm{sin}\:{kx}\right) \\ $$$${A}+{iB}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{{ikx}} =\frac{{e}^{{i}\left({n}+\mathrm{1}\right){x}} −\mathrm{1}}{{e}^{{ix}} −\mathrm{1}} \\ $$$${A}+{iB}=\frac{\mathrm{cos}\:\left({n}+\mathrm{1}\right){x}−\mathrm{1}+{i}\:\mathrm{sin}\:\left({n}+\mathrm{1}\right){x}}{\mathrm{cos}\:{x}−\mathrm{1}+{i}\:\mathrm{sin}\:{x}} \\ $$$${A}+{iB}=\frac{\left[\mathrm{cos}\:\left({n}+\mathrm{1}\right){x}−\mathrm{1}+{i}\:\mathrm{sin}\:\left({n}+\mathrm{1}\right){x}\right]\left(\mathrm{cos}\:{x}−\mathrm{1}−{i}\:\mathrm{sin}\:{x}\right)}{\left(\mathrm{cos}\:{x}−\mathrm{1}+{i}\:\mathrm{sin}\:{x}\right)\left(\mathrm{cos}\:{x}−\mathrm{1}−{i}\:\mathrm{sin}\:{x}\right)} \\ $$$${A}+{iB}=\frac{\left[\mathrm{cos}\:\left({n}+\mathrm{1}\right){x}−\mathrm{1}\right]\left(\mathrm{cos}\:{x}−\mathrm{1}\right)+\mathrm{sin}\:\left({n}+\mathrm{1}\right){x}\:\mathrm{sin}\:{x}+{i}\left\{\mathrm{sin}\:\left({n}+\mathrm{1}\right){x}\:\left(\mathrm{cos}\:{x}−\mathrm{1}\right)−\left[\mathrm{cos}\:\left({n}+\mathrm{1}\right){x}−\mathrm{1}\right]\mathrm{sin}\:{x}\right\}}{\:\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}} \\ $$$$\Rightarrow{A}=\frac{\left[\mathrm{cos}\:\left({n}+\mathrm{1}\right){x}−\mathrm{1}\right]\left(\mathrm{cos}\:{x}−\mathrm{1}\right)+\mathrm{sin}\:\left({n}+\mathrm{1}\right){x}\:\mathrm{sin}\:{x}}{\:\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}} \\ $$$$\Rightarrow{A}=\frac{\mathrm{sin}\:\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}−\mathrm{sin}\:\frac{{x}}{\mathrm{2}}}{\:\mathrm{2}\:\mathrm{sin}\:\frac{{x}}{\mathrm{2}}} \\ $$$${B}=\frac{\mathrm{sin}\:\left({n}+\mathrm{1}\right){x}\:\left(\mathrm{cos}\:{x}−\mathrm{1}\right)−\left[\mathrm{cos}\:\left({n}+\mathrm{1}\right){x}−\mathrm{1}\right]\mathrm{sin}\:{x}}{\:\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}} \\ $$$$\Rightarrow{B}=\frac{\mathrm{cos}\:\frac{{x}}{\mathrm{2}}−\mathrm{cos}\:\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}}{\:\mathrm{2}\:\mathrm{sin}\:\frac{{x}}{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com