Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 17095 by Tinkutara last updated on 30/Jun/17

The total number of solutions of the  equation tan x + sec x = 2 which lie in  the interval [0, 2π] is

$$\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{tan}\:{x}\:+\:\mathrm{sec}\:{x}\:=\:\mathrm{2}\:\mathrm{which}\:\mathrm{lie}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{2}\pi\right]\:\mathrm{is} \\ $$

Answered by sma3l2996 last updated on 30/Jun/17

tanx+secx=2⇔tanx+(√(1+tan^2 x))=2  (2−tanx)^2 =1+tan^2 x  4+tan^2 x−4tanx=1+tan^2 x  4tanx=3⇔x=tan^(−1) ((3/4))+nπ  \n∈N  x=tan^(−1) ((3/4))+nπ   \n=(0,1,2)

$${tanx}+{secx}=\mathrm{2}\Leftrightarrow{tanx}+\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} {x}}=\mathrm{2} \\ $$$$\left(\mathrm{2}−{tanx}\right)^{\mathrm{2}} =\mathrm{1}+{tan}^{\mathrm{2}} {x} \\ $$$$\mathrm{4}+{tan}^{\mathrm{2}} {x}−\mathrm{4}{tanx}=\mathrm{1}+{tan}^{\mathrm{2}} {x} \\ $$$$\mathrm{4}{tanx}=\mathrm{3}\Leftrightarrow{x}={tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)+{n}\pi\:\:\backslash{n}\in{N} \\ $$$${x}={tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)+{n}\pi\:\:\:\backslash{n}=\left(\mathrm{0},\mathrm{1},\mathrm{2}\right) \\ $$

Commented by Tinkutara last updated on 01/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Commented by ajfour last updated on 01/Jul/17

but tan x is −ve there..  so  sec x+tan x=(5/4)−(3/4)≠2 .  while squaring you gathered a false  root x=π−sin^(−1) (3/5), reject that.

$$\mathrm{but}\:\mathrm{tan}\:\mathrm{x}\:\mathrm{is}\:−\mathrm{ve}\:\mathrm{there}.. \\ $$$$\mathrm{so}\:\:\mathrm{sec}\:\mathrm{x}+\mathrm{tan}\:\mathrm{x}=\frac{\mathrm{5}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{4}}\neq\mathrm{2}\:. \\ $$$$\mathrm{while}\:\mathrm{squaring}\:\mathrm{you}\:\mathrm{gathered}\:\mathrm{a}\:\mathrm{false} \\ $$$$\mathrm{root}\:\mathrm{x}=\pi−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{5}},\:\mathrm{reject}\:\mathrm{that}. \\ $$

Commented by sma3l2996 last updated on 01/Jul/17

I think you did mistak on the line 2  the correct is : sinx+1=2cosx

$${I}\:{think}\:{you}\:{did}\:{mistak}\:{on}\:{the}\:{line}\:\mathrm{2} \\ $$$${the}\:{correct}\:{is}\::\:{sinx}+\mathrm{1}=\mathrm{2}{cosx} \\ $$

Commented by ajfour last updated on 01/Jul/17

why?, you have   θ=sin^(−1) ((3/5)) as a  true answer. so one solution.

$$\mathrm{why}?,\:\mathrm{you}\:\mathrm{have}\:\:\:\theta=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)\:\mathrm{as}\:\mathrm{a} \\ $$$$\mathrm{true}\:\mathrm{answer}.\:\mathrm{so}\:\mathrm{one}\:\mathrm{solution}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com