Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 169088 by cortano1 last updated on 24/Apr/22

Answered by mr W last updated on 24/Apr/22

a=18  b=15  c=12  s=(18+15+12)/2=22.5  Δ=(√(22.5×4.5×7.5×10.5))=((135(√7))/4)  sin B=((2Δ)/(ac))=((2×135(√7))/(4×18×12))=((5(√7))/(16)) ⇒cos B=(9/(16))  sin C=((2Δ)/(ab))=((2×135(√7))/(4×18×15))=((√7)/4) ⇒cos C=(3/4)  tan (B/2)=(((5(√7))/(16))/(1+(9/(16))))=((√7)/5)  tan (C/2)=(((√7)/4)/(1+(3/4)))=((√7)/7)  (18−(3/(tan (B/2)))−(R/(tan (C/2))))^2 =(3+R)^2 −(3−R)^2   (18−((15(√7))/( 7))−(√7)R)^2 =12R  (18−((15(√7))/( 7)))^2 −18(2(√7)−1)R+7R^2 =0  R=(1/7)[9(2(√7)−1)−(√(81(2(√7)−1)^2 −7(18−((15(√7))/( 7)))^2 ))]     =((9(2(√7)−1)−6(√(2(3(√7)−2))))/7)≈2.564

$${a}=\mathrm{18} \\ $$$${b}=\mathrm{15} \\ $$$${c}=\mathrm{12} \\ $$$${s}=\left(\mathrm{18}+\mathrm{15}+\mathrm{12}\right)/\mathrm{2}=\mathrm{22}.\mathrm{5} \\ $$$$\Delta=\sqrt{\mathrm{22}.\mathrm{5}×\mathrm{4}.\mathrm{5}×\mathrm{7}.\mathrm{5}×\mathrm{10}.\mathrm{5}}=\frac{\mathrm{135}\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$$\mathrm{sin}\:{B}=\frac{\mathrm{2}\Delta}{{ac}}=\frac{\mathrm{2}×\mathrm{135}\sqrt{\mathrm{7}}}{\mathrm{4}×\mathrm{18}×\mathrm{12}}=\frac{\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{16}}\:\Rightarrow\mathrm{cos}\:{B}=\frac{\mathrm{9}}{\mathrm{16}} \\ $$$$\mathrm{sin}\:{C}=\frac{\mathrm{2}\Delta}{{ab}}=\frac{\mathrm{2}×\mathrm{135}\sqrt{\mathrm{7}}}{\mathrm{4}×\mathrm{18}×\mathrm{15}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}\:\Rightarrow\mathrm{cos}\:{C}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{tan}\:\frac{{B}}{\mathrm{2}}=\frac{\frac{\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{16}}}{\mathrm{1}+\frac{\mathrm{9}}{\mathrm{16}}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{5}} \\ $$$$\mathrm{tan}\:\frac{{C}}{\mathrm{2}}=\frac{\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}}{\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{7}} \\ $$$$\left(\mathrm{18}−\frac{\mathrm{3}}{\mathrm{tan}\:\frac{{B}}{\mathrm{2}}}−\frac{{R}}{\mathrm{tan}\:\frac{{C}}{\mathrm{2}}}\right)^{\mathrm{2}} =\left(\mathrm{3}+{R}\right)^{\mathrm{2}} −\left(\mathrm{3}−{R}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{18}−\frac{\mathrm{15}\sqrt{\mathrm{7}}}{\:\mathrm{7}}−\sqrt{\mathrm{7}}{R}\right)^{\mathrm{2}} =\mathrm{12}{R} \\ $$$$\left(\mathrm{18}−\frac{\mathrm{15}\sqrt{\mathrm{7}}}{\:\mathrm{7}}\right)^{\mathrm{2}} −\mathrm{18}\left(\mathrm{2}\sqrt{\mathrm{7}}−\mathrm{1}\right){R}+\mathrm{7}{R}^{\mathrm{2}} =\mathrm{0} \\ $$$${R}=\frac{\mathrm{1}}{\mathrm{7}}\left[\mathrm{9}\left(\mathrm{2}\sqrt{\mathrm{7}}−\mathrm{1}\right)−\sqrt{\mathrm{81}\left(\mathrm{2}\sqrt{\mathrm{7}}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{7}\left(\mathrm{18}−\frac{\mathrm{15}\sqrt{\mathrm{7}}}{\:\mathrm{7}}\right)^{\mathrm{2}} }\right] \\ $$$$\:\:\:=\frac{\mathrm{9}\left(\mathrm{2}\sqrt{\mathrm{7}}−\mathrm{1}\right)−\mathrm{6}\sqrt{\mathrm{2}\left(\mathrm{3}\sqrt{\mathrm{7}}−\mathrm{2}\right)}}{\mathrm{7}}\approx\mathrm{2}.\mathrm{564} \\ $$

Commented by mr W last updated on 24/Apr/22

Commented by Tawa11 last updated on 24/Apr/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com