Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168296 by Florian last updated on 07/Apr/22

∫(5x+2)cos(2x)dx=?

$$\int\left(\mathrm{5}{x}+\mathrm{2}\right){cos}\left(\mathrm{2}{x}\right){dx}=? \\ $$

Answered by floor(10²Eta[1]) last updated on 07/Apr/22

u=5x+2⇒du=5dx  dv=cos(2x)dx⇒v=((sin(2x))/2)  =(((5x+2)sin(2x))/2)−(5/2)∫sin(2x)dx  =(((5x+2)sin(2x))/2)+((5cos(2x))/4)+C

$$\mathrm{u}=\mathrm{5x}+\mathrm{2}\Rightarrow\mathrm{du}=\mathrm{5dx} \\ $$$$\mathrm{dv}=\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{dx}\Rightarrow\mathrm{v}=\frac{\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{2}} \\ $$$$=\frac{\left(\mathrm{5x}+\mathrm{2}\right)\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{2}}−\frac{\mathrm{5}}{\mathrm{2}}\int\mathrm{sin}\left(\mathrm{2x}\right)\mathrm{dx} \\ $$$$=\frac{\left(\mathrm{5x}+\mathrm{2}\right)\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{2}}+\frac{\mathrm{5cos}\left(\mathrm{2x}\right)}{\mathrm{4}}+\mathrm{C} \\ $$$$ \\ $$

Commented by Florian last updated on 08/Apr/22

Correct!

$${Correct}! \\ $$

Answered by peter frank last updated on 07/Apr/22

∫5xcos 2xdx+∫2cos 2xdx  5∫xcos xdx+2∫cos 2xdx  by part

$$\int\mathrm{5xcos}\:\mathrm{2xdx}+\int\mathrm{2cos}\:\mathrm{2xdx} \\ $$$$\mathrm{5}\int\mathrm{xcos}\:\mathrm{xdx}+\mathrm{2}\int\mathrm{cos}\:\mathrm{2xdx} \\ $$$$\mathrm{by}\:\mathrm{part}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com