Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 168131 by daus last updated on 04/Apr/22

Commented by daus last updated on 04/Apr/22

help me to solve above equation

$${help}\:{me}\:{to}\:{solve}\:{above}\:{equation} \\ $$

Answered by benhamimed last updated on 04/Apr/22

(d)⇔ { ((x^3 =t)),((t^2 −2t−8=0)) :}  t=−2 ;t=4  S={−(2)^(1/3) ;(4)^(1/3) }  (e)→x^6 −6x^3 −16=0  ⇔ { ((x^3 =t)),((t^2 −6t−16=0)) :}  t=−2;8  S={−(2)^(1/3) ;2}

$$\left({d}\right)\Leftrightarrow\begin{cases}{{x}^{\mathrm{3}} ={t}}\\{{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{8}=\mathrm{0}}\end{cases} \\ $$$${t}=−\mathrm{2}\:;{t}=\mathrm{4} \\ $$$${S}=\left\{−\sqrt[{\mathrm{3}}]{\mathrm{2}};\sqrt[{\mathrm{3}}]{\mathrm{4}}\right\} \\ $$$$\left({e}\right)\rightarrow{x}^{\mathrm{6}} −\mathrm{6}{x}^{\mathrm{3}} −\mathrm{16}=\mathrm{0} \\ $$$$\Leftrightarrow\begin{cases}{{x}^{\mathrm{3}} ={t}}\\{{t}^{\mathrm{2}} −\mathrm{6}{t}−\mathrm{16}=\mathrm{0}}\end{cases} \\ $$$${t}=−\mathrm{2};\mathrm{8} \\ $$$${S}=\left\{−\sqrt[{\mathrm{3}}]{\mathrm{2}};\mathrm{2}\right\} \\ $$

Answered by MJS_new last updated on 04/Apr/22

x^6 −2x^3 −8=0  (x^3 −4)(x^3 +2)=0  x_1 =(4)^(1/3)   x_(2, 3) =−((1±(√3)i)/( (2)^(1/3) ))  x_4 =−(2)^(1/3)   x_(5, 6) =((1±(√3)i)/( (4)^(1/3) ))      x^2 =((2(3x^3 +8))/x^4 )  x^6 −6x^3 −16=0  (x−2)(x^2 +2x+4)(x^3 +2)=0  x_1 =2  x_(2, 3) =−1±(√3)i  x_4 =−(2)^(1/3)   x_(5, 6) =((1±(√3)i)/( (4)^(1/3) ))

$${x}^{\mathrm{6}} −\mathrm{2}{x}^{\mathrm{3}} −\mathrm{8}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{4}\right)\left({x}^{\mathrm{3}} +\mathrm{2}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\sqrt[{\mathrm{3}}]{\mathrm{4}} \\ $$$${x}_{\mathrm{2},\:\mathrm{3}} =−\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}\mathrm{i}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}} \\ $$$${x}_{\mathrm{4}} =−\sqrt[{\mathrm{3}}]{\mathrm{2}} \\ $$$${x}_{\mathrm{5},\:\mathrm{6}} =\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}\mathrm{i}}{\:\sqrt[{\mathrm{3}}]{\mathrm{4}}} \\ $$$$ \\ $$$$ \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{2}\left(\mathrm{3}{x}^{\mathrm{3}} +\mathrm{8}\right)}{{x}^{\mathrm{4}} } \\ $$$${x}^{\mathrm{6}} −\mathrm{6}{x}^{\mathrm{3}} −\mathrm{16}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}\right)\left({x}^{\mathrm{3}} +\mathrm{2}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{2} \\ $$$${x}_{\mathrm{2},\:\mathrm{3}} =−\mathrm{1}\pm\sqrt{\mathrm{3}}\mathrm{i} \\ $$$${x}_{\mathrm{4}} =−\sqrt[{\mathrm{3}}]{\mathrm{2}} \\ $$$${x}_{\mathrm{5},\:\mathrm{6}} =\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}\mathrm{i}}{\:\sqrt[{\mathrm{3}}]{\mathrm{4}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com