Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 168118 by Mastermind last updated on 03/Apr/22

If tan(θ+iφ)=cosα+isinα,   prove that : θ=((nΠ)/2)+(Π/4) and φ=(1/2)log tan((Π/4)+(α/2))

$${If}\:{tan}\left(\theta+{i}\phi\right)={cos}\alpha+{isin}\alpha,\: \\ $$$${prove}\:{that}\::\:\theta=\frac{{n}\Pi}{\mathrm{2}}+\frac{\Pi}{\mathrm{4}}\:{and}\:\phi=\frac{\mathrm{1}}{\mathrm{2}}{log}\:{tan}\left(\frac{\Pi}{\mathrm{4}}+\frac{\alpha}{\mathrm{2}}\right) \\ $$

Answered by mathsmine last updated on 05/Apr/22

tan(θ+i∅)=((tan(θ)+tan(i∅))/(1−tan(θ)tan(i∅)))  tan(ix)=ith(x)  ⇔((tan(θ)+ith(∅))/(1−itan(θ)th(∅)))=cos(a)+isin(a)  ⇔cos(a)+sin(a)tan(θ)th(∅)+i(sin(a)−tan(θ)th(∅)cos(a))  =tan(θ)+ith(∅)  tan(θ)=((cos(a))/(1−sin(a)th(∅)))  th(∅)=((sin(a))/(1+tg(θ)cos(a)))  ⇒tg(θ)=cos(a)(1+tg(θ)cos(a)).(1/((1+tg(θ)cos(a)−sin^2 (a)))  =((1+tg(θ)cos(a))/(tg(θ)+cos(a)))⇔  tg^2 (θ)=1⇒ tg(θ)=+_− 1⇒  θ=(π/4)+n(π/2)  th(∅)=((sin(a))/(1+_− cos(a))),  ((sin(a))/(1+cos(a)))=tg((a/2)).....E  ((sin(a))/(1−cos(a)))=cot((a/2))  th(x)=a⇒x=argth(a)=(1/2)ln(((a+1)/(1−a)))  E⇒∅=(1/2)ln(((1+tg((a/2)))/(1−tg((a/2))))))=(1/2)ln(tg((π/4)+(a/2)))  ≤((1+tg(x))/(1−tg(x)))=tg(x+(π/4))≥  So θ=((nπ)/2)+(π/4)  ∅=(1/2)ln(tg((a/2)+(π/4)))

$${tan}\left(\theta+{i}\emptyset\right)=\frac{{tan}\left(\theta\right)+{tan}\left({i}\emptyset\right)}{\mathrm{1}−{tan}\left(\theta\right){tan}\left({i}\emptyset\right)} \\ $$$${tan}\left({ix}\right)={ith}\left({x}\right) \\ $$$$\Leftrightarrow\frac{{tan}\left(\theta\right)+{ith}\left(\emptyset\right)}{\mathrm{1}−{itan}\left(\theta\right){th}\left(\emptyset\right)}={cos}\left({a}\right)+{isin}\left({a}\right) \\ $$$$\Leftrightarrow{cos}\left({a}\right)+{sin}\left({a}\right){tan}\left(\theta\right){th}\left(\emptyset\right)+{i}\left({sin}\left({a}\right)−{tan}\left(\theta\right){th}\left(\emptyset\right){cos}\left({a}\right)\right) \\ $$$$={tan}\left(\theta\right)+{ith}\left(\emptyset\right) \\ $$$${tan}\left(\theta\right)=\frac{{cos}\left({a}\right)}{\mathrm{1}−{sin}\left({a}\right){th}\left(\emptyset\right)} \\ $$$${th}\left(\emptyset\right)=\frac{{sin}\left({a}\right)}{\mathrm{1}+{tg}\left(\theta\right){cos}\left({a}\right)} \\ $$$$\Rightarrow{tg}\left(\theta\right)={cos}\left({a}\right)\left(\mathrm{1}+{tg}\left(\theta\right){cos}\left({a}\right)\right).\frac{\mathrm{1}}{\left(\mathrm{1}+{tg}\left(\theta\right){cos}\left({a}\right)−{sin}^{\mathrm{2}} \left({a}\right)\right.} \\ $$$$=\frac{\mathrm{1}+{tg}\left(\theta\right){cos}\left({a}\right)}{{tg}\left(\theta\right)+{cos}\left({a}\right)}\Leftrightarrow \\ $$$${tg}^{\mathrm{2}} \left(\theta\right)=\mathrm{1}\Rightarrow\:{tg}\left(\theta\right)=\underset{−} {+}\mathrm{1}\Rightarrow \\ $$$$\theta=\frac{\pi}{\mathrm{4}}+{n}\frac{\pi}{\mathrm{2}} \\ $$$${th}\left(\emptyset\right)=\frac{{sin}\left({a}\right)}{\mathrm{1}\underset{−} {+}{cos}\left({a}\right)}, \\ $$$$\frac{{sin}\left({a}\right)}{\mathrm{1}+{cos}\left({a}\right)}={tg}\left(\frac{{a}}{\mathrm{2}}\right).....{E} \\ $$$$\frac{{sin}\left({a}\right)}{\mathrm{1}−{cos}\left({a}\right)}={cot}\left(\frac{{a}}{\mathrm{2}}\right) \\ $$$${th}\left({x}\right)={a}\Rightarrow{x}={argth}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{{a}+\mathrm{1}}{\mathrm{1}−{a}}\right) \\ $$$${E}\Rightarrow\emptyset=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{1}+{tg}\left(\frac{{a}}{\mathrm{2}}\right)}{\left.\mathrm{1}−{tg}\left(\frac{{a}}{\mathrm{2}}\right)\right)}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({tg}\left(\frac{\pi}{\mathrm{4}}+\frac{{a}}{\mathrm{2}}\right)\right) \\ $$$$\leqslant\frac{\mathrm{1}+{tg}\left({x}\right)}{\mathrm{1}−{tg}\left({x}\right)}={tg}\left({x}+\frac{\pi}{\mathrm{4}}\right)\geqslant \\ $$$${So}\:\theta=\frac{{n}\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{4}} \\ $$$$\emptyset=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({tg}\left(\frac{{a}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Mastermind last updated on 05/Apr/22

Thanks man, you did a great Job!    Could you please drop your Whatsapp number?

$${Thanks}\:{man},\:{you}\:{did}\:{a}\:{great}\:{Job}! \\ $$$$ \\ $$$${Could}\:{you}\:{please}\:{drop}\:{your}\:{Whatsapp}\:{number}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com