Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 168013 by leicianocosta last updated on 31/Mar/22

Answered by nurtani last updated on 31/Mar/22

    ^9 (√x)+((^9 (√x^8 ))/x)=((17)/4)  ⇔ x^(1/9) +(x^(8/9) /x)=((17)/4)  ⇔ x^(1/9) +x^((8/9)−1) =((17)/4)  ⇔ x^(1/9) +x^(−(1/9)) =((17)/4)  ⇔ x^(1/9) +(1/x^(1/9) )=((17)/4)  say : x^(1/9) = β  ⇒ β+(1/β) = ((17)/4) ⇒ β^2 +1=((17)/4)β  × 4  ⇒ 4β^2 +4=17β ⇒ 4β^2 −17β+4=0  ⇒ (β−4)(4β−1)=0  { ((β=4 ⇒ x^(1/9) =4 ⇒ x=4^9 =(2^2 )^9 =2^(18) )),((β=(1/4)⇒ x^(1/9) =(1/4)=4^(−1) ⇒ x^(1/9) =4^(−1) ⇒x=2^(−18) )) :}     ∴  x = 2^(18)   ∨  x = 2^(−18)

$$\:\:\:\:\:^{\mathrm{9}} \sqrt{{x}}+\frac{\:^{\mathrm{9}} \sqrt{{x}^{\mathrm{8}} }}{{x}}=\frac{\mathrm{17}}{\mathrm{4}} \\ $$$$\Leftrightarrow\:{x}^{\frac{\mathrm{1}}{\mathrm{9}}} +\frac{{x}^{\frac{\mathrm{8}}{\mathrm{9}}} }{{x}}=\frac{\mathrm{17}}{\mathrm{4}} \\ $$$$\Leftrightarrow\:{x}^{\frac{\mathrm{1}}{\mathrm{9}}} +{x}^{\frac{\mathrm{8}}{\mathrm{9}}−\mathrm{1}} =\frac{\mathrm{17}}{\mathrm{4}} \\ $$$$\Leftrightarrow\:{x}^{\frac{\mathrm{1}}{\mathrm{9}}} +{x}^{−\frac{\mathrm{1}}{\mathrm{9}}} =\frac{\mathrm{17}}{\mathrm{4}} \\ $$$$\Leftrightarrow\:{x}^{\frac{\mathrm{1}}{\mathrm{9}}} +\frac{\mathrm{1}}{{x}^{\frac{\mathrm{1}}{\mathrm{9}}} }=\frac{\mathrm{17}}{\mathrm{4}} \\ $$$${say}\::\:{x}^{\frac{\mathrm{1}}{\mathrm{9}}} =\:\beta \\ $$$$\Rightarrow\:\beta+\frac{\mathrm{1}}{\beta}\:=\:\frac{\mathrm{17}}{\mathrm{4}}\:\Rightarrow\:\beta^{\mathrm{2}} +\mathrm{1}=\frac{\mathrm{17}}{\mathrm{4}}\beta\:\:×\:\mathrm{4} \\ $$$$\Rightarrow\:\mathrm{4}\beta^{\mathrm{2}} +\mathrm{4}=\mathrm{17}\beta\:\Rightarrow\:\mathrm{4}\beta^{\mathrm{2}} −\mathrm{17}\beta+\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow\:\left(\beta−\mathrm{4}\right)\left(\mathrm{4}\beta−\mathrm{1}\right)=\mathrm{0}\:\begin{cases}{\beta=\mathrm{4}\:\Rightarrow\:{x}^{\frac{\mathrm{1}}{\mathrm{9}}} =\mathrm{4}\:\Rightarrow\:{x}=\mathrm{4}^{\mathrm{9}} =\left(\mathrm{2}^{\mathrm{2}} \right)^{\mathrm{9}} =\mathrm{2}^{\mathrm{18}} }\\{\beta=\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow\:{x}^{\frac{\mathrm{1}}{\mathrm{9}}} =\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{4}^{−\mathrm{1}} \Rightarrow\:{x}^{\frac{\mathrm{1}}{\mathrm{9}}} =\mathrm{4}^{−\mathrm{1}} \Rightarrow{x}=\mathrm{2}^{−\mathrm{18}} }\end{cases} \\ $$$$\:\:\:\therefore\:\:{x}\:=\:\mathrm{2}^{\mathrm{18}} \:\:\vee\:\:{x}\:=\:\mathrm{2}^{−\mathrm{18}} \\ $$

Answered by yogamulyadi last updated on 01/Apr/22

(x)^(1/9) +(1/( (x)^(1/9) ))=4+(1/4)  (x)^(1/9) =4^(±1) =2^(±2)   x∈{2^(-18) , 2^(18) }  .  .  sorry, not understand the language

$$\sqrt[{\mathrm{9}}]{{x}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{9}}]{{x}}}=\mathrm{4}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\sqrt[{\mathrm{9}}]{{x}}=\mathrm{4}^{\pm\mathrm{1}} =\mathrm{2}^{\pm\mathrm{2}} \\ $$$${x}\in\left\{\mathrm{2}^{-\mathrm{18}} ,\:\mathrm{2}^{\mathrm{18}} \right\} \\ $$$$. \\ $$$$. \\ $$$${sorry},\:{not}\:{understand}\:{the}\:{language} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com