Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 167928 by Mastermind last updated on 29/Mar/22

Show that ∣1−i∣^x =2^x  has no nonzero integral solution

$${Show}\:{that}\:\mid\mathrm{1}−{i}\mid^{{x}} =\mathrm{2}^{{x}} \:{has}\:{no}\:{nonzero}\:{integral}\:{solution}\: \\ $$

Answered by MJS_new last updated on 30/Mar/22

∣1−i∣=(√2); ∣1−i∣^x =((√2))^x =2^(x/2)   2^(x/2) =2^x   (2^(x/2) )=(2^(x/2) )^2   ⇒ 2^(x/2) =0∨2^(x/2) =1 ⇒ x=−∞∨x=0

$$\mid\mathrm{1}−\mathrm{i}\mid=\sqrt{\mathrm{2}};\:\mid\mathrm{1}−\mathrm{i}\mid^{{x}} =\left(\sqrt{\mathrm{2}}\right)^{{x}} =\mathrm{2}^{\frac{{x}}{\mathrm{2}}} \\ $$$$\mathrm{2}^{\frac{{x}}{\mathrm{2}}} =\mathrm{2}^{{x}} \\ $$$$\left(\mathrm{2}^{\frac{{x}}{\mathrm{2}}} \right)=\left(\mathrm{2}^{\frac{{x}}{\mathrm{2}}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}^{\frac{{x}}{\mathrm{2}}} =\mathrm{0}\vee\mathrm{2}^{\frac{{x}}{\mathrm{2}}} =\mathrm{1}\:\Rightarrow\:{x}=−\infty\vee{x}=\mathrm{0} \\ $$

Commented by Mastermind last updated on 31/Mar/22

Thanks

$${Thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com