Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167925 by naka3546 last updated on 29/Mar/22

Given  f(x) = ax^5  + bx^4  + cx^3  + dx^2  + ex + f .  f(1) = 1 , f(2) = (1/4)  ,  f(3) = (1/9)  ,  f(4) = (1/(16))  ,  f(5) = (1/(25))  ,  and  f(6) = (1/(36)) .  Value  of  f(8) = ?

$$\mathrm{Given}\:\:{f}\left({x}\right)\:=\:{ax}^{\mathrm{5}} \:+\:{bx}^{\mathrm{4}} \:+\:{cx}^{\mathrm{3}} \:+\:{dx}^{\mathrm{2}} \:+\:{ex}\:+\:{f}\:. \\ $$$${f}\left(\mathrm{1}\right)\:=\:\mathrm{1}\:,\:{f}\left(\mathrm{2}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\:,\:\:{f}\left(\mathrm{3}\right)\:=\:\frac{\mathrm{1}}{\mathrm{9}}\:\:,\:\:{f}\left(\mathrm{4}\right)\:=\:\frac{\mathrm{1}}{\mathrm{16}}\:\:, \\ $$$${f}\left(\mathrm{5}\right)\:=\:\frac{\mathrm{1}}{\mathrm{25}}\:\:,\:\:{and}\:\:{f}\left(\mathrm{6}\right)\:=\:\frac{\mathrm{1}}{\mathrm{36}}\:. \\ $$$${Value}\:\:{of}\:\:{f}\left(\mathrm{8}\right)\:=\:? \\ $$

Answered by mr W last updated on 29/Mar/22

f(8)= [(1,1,1,1,1,1,1),((32),(16),8,4,2,1,(1/4)),((243),(81),(27),9,3,1,(1/9)),((1024),(256),(64),(16),4,1,(1/16)),((3125),(625),(125),(25),5,1,(1/25)),((7776),(1296),(216),(36),6,1,(1/36)),((32768),(4096),(512),(64),8,1,0) ]/ [(1,1,1,1,1,1,0),((32),(16),8,4,2,1,0),((243),(81),(27),9,3,1,0),((1024),(256),(64),(16),4,1,0),((3125),(625),(125),(25),5,1,0),((7776),(1296),(216),(36),6,1,0),((32768),(4096),(512),(64),8,1,(−1)) ]  =−((77328)/(34560))  =−((179)/(80))

$${f}\left(\mathrm{8}\right)=\begin{bmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{32}}&{\mathrm{16}}&{\mathrm{8}}&{\mathrm{4}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{1}/\mathrm{4}}\\{\mathrm{243}}&{\mathrm{81}}&{\mathrm{27}}&{\mathrm{9}}&{\mathrm{3}}&{\mathrm{1}}&{\mathrm{1}/\mathrm{9}}\\{\mathrm{1024}}&{\mathrm{256}}&{\mathrm{64}}&{\mathrm{16}}&{\mathrm{4}}&{\mathrm{1}}&{\mathrm{1}/\mathrm{16}}\\{\mathrm{3125}}&{\mathrm{625}}&{\mathrm{125}}&{\mathrm{25}}&{\mathrm{5}}&{\mathrm{1}}&{\mathrm{1}/\mathrm{25}}\\{\mathrm{7776}}&{\mathrm{1296}}&{\mathrm{216}}&{\mathrm{36}}&{\mathrm{6}}&{\mathrm{1}}&{\mathrm{1}/\mathrm{36}}\\{\mathrm{32768}}&{\mathrm{4096}}&{\mathrm{512}}&{\mathrm{64}}&{\mathrm{8}}&{\mathrm{1}}&{\mathrm{0}}\end{bmatrix}/\begin{bmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{32}}&{\mathrm{16}}&{\mathrm{8}}&{\mathrm{4}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{243}}&{\mathrm{81}}&{\mathrm{27}}&{\mathrm{9}}&{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1024}}&{\mathrm{256}}&{\mathrm{64}}&{\mathrm{16}}&{\mathrm{4}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{3125}}&{\mathrm{625}}&{\mathrm{125}}&{\mathrm{25}}&{\mathrm{5}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{7776}}&{\mathrm{1296}}&{\mathrm{216}}&{\mathrm{36}}&{\mathrm{6}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{32768}}&{\mathrm{4096}}&{\mathrm{512}}&{\mathrm{64}}&{\mathrm{8}}&{\mathrm{1}}&{−\mathrm{1}}\end{bmatrix} \\ $$$$=−\frac{\mathrm{77328}}{\mathrm{34560}} \\ $$$$=−\frac{\mathrm{179}}{\mathrm{80}} \\ $$

Commented by naka3546 last updated on 29/Mar/22

Thank  you,  sir.

$$\mathrm{Thank}\:\:\mathrm{you},\:\:\mathrm{sir}. \\ $$

Commented by Tawa11 last updated on 30/Mar/22

Great sir.  What is the rule to set the matrix sir. God bless you.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{rule}\:\mathrm{to}\:\mathrm{set}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Commented by mr W last updated on 30/Mar/22

solving system of 7 linear equations  with Cramer′s rule.  see also Q167839

$${solving}\:{system}\:{of}\:\mathrm{7}\:{linear}\:{equations} \\ $$$${with}\:{Cramer}'{s}\:{rule}. \\ $$$${see}\:{also}\:{Q}\mathrm{167839} \\ $$

Commented by mr W last updated on 30/Mar/22

f(1)=a+b+c+d+e+f=1  f(2)=2^5 a+2^4 b+2^3 c+2^2 d+2e+f=1/4  f(3)=3^5 a+3^4 b+3^3 c+3^2 d+3e+f=1/9  ....  f(6)=6^5 a+6^4 b+6^3 c+6^2 d+6e+f=1/36  f(8)=8^5 a+8^4 b+8^3 c+8^2 d+8e+f=s say  we get 7 equations:  a+b+c+d+e+f+0s=1  2^5 a+2^4 b+2^3 c+2^2 d+2e+f+0s=1/4  3^5 a+3^4 b+3^3 c+3^2 d+3e+f+0s=1/9  ...  6^5 a+6^4 b+6^3 c+6^2 d+6e+f+0s=1/36  8^5 a+8^4 b+8^3 c+8^2 d+8e+f−s=0  now we can solve a,b,c,d,e,f,s.

$${f}\left(\mathrm{1}\right)={a}+{b}+{c}+{d}+{e}+{f}=\mathrm{1} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{2}^{\mathrm{5}} {a}+\mathrm{2}^{\mathrm{4}} {b}+\mathrm{2}^{\mathrm{3}} {c}+\mathrm{2}^{\mathrm{2}} {d}+\mathrm{2}{e}+{f}=\mathrm{1}/\mathrm{4} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{3}^{\mathrm{5}} {a}+\mathrm{3}^{\mathrm{4}} {b}+\mathrm{3}^{\mathrm{3}} {c}+\mathrm{3}^{\mathrm{2}} {d}+\mathrm{3}{e}+{f}=\mathrm{1}/\mathrm{9} \\ $$$$.... \\ $$$${f}\left(\mathrm{6}\right)=\mathrm{6}^{\mathrm{5}} {a}+\mathrm{6}^{\mathrm{4}} {b}+\mathrm{6}^{\mathrm{3}} {c}+\mathrm{6}^{\mathrm{2}} {d}+\mathrm{6}{e}+{f}=\mathrm{1}/\mathrm{36} \\ $$$${f}\left(\mathrm{8}\right)=\mathrm{8}^{\mathrm{5}} {a}+\mathrm{8}^{\mathrm{4}} {b}+\mathrm{8}^{\mathrm{3}} {c}+\mathrm{8}^{\mathrm{2}} {d}+\mathrm{8}{e}+{f}={s}\:{say} \\ $$$${we}\:{get}\:\mathrm{7}\:{equations}: \\ $$$${a}+{b}+{c}+{d}+{e}+{f}+\mathrm{0}{s}=\mathrm{1} \\ $$$$\mathrm{2}^{\mathrm{5}} {a}+\mathrm{2}^{\mathrm{4}} {b}+\mathrm{2}^{\mathrm{3}} {c}+\mathrm{2}^{\mathrm{2}} {d}+\mathrm{2}{e}+{f}+\mathrm{0}{s}=\mathrm{1}/\mathrm{4} \\ $$$$\mathrm{3}^{\mathrm{5}} {a}+\mathrm{3}^{\mathrm{4}} {b}+\mathrm{3}^{\mathrm{3}} {c}+\mathrm{3}^{\mathrm{2}} {d}+\mathrm{3}{e}+{f}+\mathrm{0}{s}=\mathrm{1}/\mathrm{9} \\ $$$$... \\ $$$$\mathrm{6}^{\mathrm{5}} {a}+\mathrm{6}^{\mathrm{4}} {b}+\mathrm{6}^{\mathrm{3}} {c}+\mathrm{6}^{\mathrm{2}} {d}+\mathrm{6}{e}+{f}+\mathrm{0}{s}=\mathrm{1}/\mathrm{36} \\ $$$$\mathrm{8}^{\mathrm{5}} {a}+\mathrm{8}^{\mathrm{4}} {b}+\mathrm{8}^{\mathrm{3}} {c}+\mathrm{8}^{\mathrm{2}} {d}+\mathrm{8}{e}+{f}−{s}=\mathrm{0} \\ $$$${now}\:{we}\:{can}\:{solve}\:{a},{b},{c},{d},{e},{f},{s}. \\ $$

Commented by Tawa11 last updated on 30/Mar/22

Thanks sir. I appreciate.

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com