Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167916 by bounhome last updated on 29/Mar/22

give: z=cos(((2π)/(2015)))+isin(((2π)/(2015)))  find S=1+z+z^2 +z^3 +...+z^(2014)

$${give}:\:{z}={cos}\left(\frac{\mathrm{2}\pi}{\mathrm{2015}}\right)+{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{2015}}\right) \\ $$$${find}\:{S}=\mathrm{1}+{z}+{z}^{\mathrm{2}} +{z}^{\mathrm{3}} +...+{z}^{\mathrm{2014}} \\ $$

Commented by benhamimed last updated on 29/Mar/22

z=e^(i((2π)/(2015)))   S=((e^(i((2π)/(2015))×2015) −1)/(e^(i((2π)/(2015))) −1))=((e^(i2π) −1)/(e^(i((2π)/(2015))) −1))=0

$${z}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{2015}}} \\ $$$${S}=\frac{{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{2015}}×\mathrm{2015}} −\mathrm{1}}{{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{2015}}} −\mathrm{1}}=\frac{{e}^{{i}\mathrm{2}\pi} −\mathrm{1}}{{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{2015}}} −\mathrm{1}}=\mathrm{0} \\ $$

Answered by dangduomg last updated on 29/Mar/22

S=1+z+z^2 +z^3 +...+z^(2014)   = ((1 − z^(2015) )/(1 − z))  = ((1 − (cos(((2π)/(2015))) + i sin(((2π)/(2015))))^(2015) )/(1 − (cos(((2π)/(2015))) + i sin(((2π)/(2015))))))  = ((1 − cos(2π) − i sin(2π))/(1 − e^(i((2π)/(2015))) ))  = ((1 − 1)/(1 − e^(2πi/2015) ))  = 0

$${S}=\mathrm{1}+{z}+{z}^{\mathrm{2}} +{z}^{\mathrm{3}} +...+{z}^{\mathrm{2014}} \\ $$$$=\:\frac{\mathrm{1}\:−\:{z}^{\mathrm{2015}} }{\mathrm{1}\:−\:{z}} \\ $$$$=\:\frac{\mathrm{1}\:−\:\left(\mathrm{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{2015}}\right)\:+\:{i}\:\mathrm{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{2015}}\right)\right)^{\mathrm{2015}} }{\mathrm{1}\:−\:\left(\mathrm{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{2015}}\right)\:+\:{i}\:\mathrm{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{2015}}\right)\right)} \\ $$$$=\:\frac{\mathrm{1}\:−\:\mathrm{cos}\left(\mathrm{2}\pi\right)\:−\:{i}\:\mathrm{sin}\left(\mathrm{2}\pi\right)}{\mathrm{1}\:−\:{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{2015}}} } \\ $$$$=\:\frac{\mathrm{1}\:−\:\mathrm{1}}{\mathrm{1}\:−\:{e}^{\mathrm{2}\pi{i}/\mathrm{2015}} } \\ $$$$=\:\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com