Question Number 167821 by mathlove last updated on 26/Mar/22 | ||
Commented by dangduomg last updated on 26/Mar/22 | ||
$$\Rightarrow\:{E}\:=\:\left(\mathrm{4}^{\mathrm{1}/\mathrm{5}} \right)^{\left(\mathrm{5}^{\mathrm{1}/\mathrm{4}} \right)^{{E}} } \\ $$$$=\:\mathrm{4}^{\mathrm{1}/\mathrm{5}×\left(\mathrm{5}^{\mathrm{1}/\mathrm{4}} \right)^{{E}} } \\ $$$$=\:\mathrm{4}^{\mathrm{1}/\mathrm{5}×\mathrm{5}^{{E}/\mathrm{4}} } \\ $$$$=\:\mathrm{4}^{\mathrm{5}^{{E}/\mathrm{4}−\mathrm{1}} } \\ $$ | ||
Commented by aleks041103 last updated on 27/Mar/22 | ||
$${E}=\mathrm{4}: \\ $$$$\mathrm{4}^{\mathrm{5}^{\mathrm{4}/\mathrm{4}−\mathrm{1}} } =\mathrm{4}^{\mathrm{5}^{\mathrm{0}} } =\mathrm{4}^{\mathrm{1}} =\mathrm{4}={E} \\ $$$$\Rightarrow{E}=\mathrm{4}\:{is}\:{a}\:{soln}. \\ $$$${We}\:{should}\:{note}\:{that}\:{it}\:{is}\:{not}\:{the}\:{only} \\ $$$${solution} \\ $$$${log}_{\mathrm{4}} {E}=\mathrm{5}^{{E}/\mathrm{4}−\mathrm{1}} \\ $$$${x}=\mathrm{5}{log}_{\mathrm{4}} {E} \\ $$$$\Rightarrow{x}=\mathrm{5}.\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}\mathrm{4}^{{x}/\mathrm{5}} −\mathrm{1}} =\mathrm{5}^{\mathrm{4}^{{x}/\mathrm{5}−\mathrm{1}} } ={x} \\ $$$$\Rightarrow{log}_{\mathrm{5}} {x}=\mathrm{4}^{{x}/\mathrm{5}−\mathrm{1}} \\ $$$${y}=\mathrm{4}{log}_{\mathrm{5}} {x}=\mathrm{4}{log}_{\mathrm{5}} \left(\mathrm{5}{log}_{\mathrm{4}} {E}\right) \\ $$$$\Rightarrow{y}=\mathrm{4}.\mathrm{4}^{\mathrm{5}^{{y}/\mathrm{4}} /\mathrm{5}−\mathrm{1}} =\mathrm{4}^{\mathrm{5}^{{y}/\mathrm{4}−\mathrm{1}} } \\ $$$${E}=\mathrm{4}+\mathrm{4}{log}_{\mathrm{5}} \left({log}_{\mathrm{4}} {E}\right) \\ $$$${let}\:{f}\left({E}\right)={E}−\mathrm{4}−\mathrm{4}{log}_{\mathrm{5}} \left({log}_{\mathrm{4}} {E}\right) \\ $$$${from}\:{E}=\mathrm{4}^{\mathrm{5}^{{E}/\mathrm{4}−\mathrm{1}} } \:{we}\:{see}\:{that}\:{E}>\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)\rightarrow+\infty>\mathrm{0} \\ $$$${f}\left(\mathrm{16}\right)=\mathrm{12}−\mathrm{4}{log}_{\mathrm{5}} \left(\mathrm{2}\right) \\ $$$${log}_{\mathrm{5}} \left(\mathrm{2}\right)<\mathrm{1}\Rightarrow{f}\left(\mathrm{16}\right)>\mathrm{12}−\mathrm{4}=\mathrm{8}>\mathrm{0} \\ $$$${f}\left(\mathrm{16}\right)>\mathrm{0} \\ $$$${BUT} \\ $$$${f}\left(\mathrm{2}\right)=−\mathrm{2}−\mathrm{4}{log}_{\mathrm{5}} \left({log}_{\mathrm{4}} \mathrm{2}\right)= \\ $$$$=−\mathrm{2}−\mathrm{4}{log}_{\mathrm{5}} \left(\mathrm{1}/\mathrm{2}\right)= \\ $$$$=\mathrm{4}{log}_{\mathrm{5}} \left(\mathrm{2}\right)−\mathrm{2}= \\ $$$$={log}_{\mathrm{5}} \left(\mathrm{2}^{\mathrm{4}} \right)−{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{2}} \right)= \\ $$$$={log}_{\mathrm{5}} \left(\frac{\mathrm{16}}{\mathrm{25}}\right)={log}_{\mathrm{5}} \left({smth}<\mathrm{1}\right)<\mathrm{0} \\ $$$$\Rightarrow{f}\left(\mathrm{0}\right)>\mathrm{0}\:\left(\mathrm{1}\right) \\ $$$${f}\left(\mathrm{2}\right)<\mathrm{0}\:\left(\mathrm{2}\right) \\ $$$${f}\left(\mathrm{16}\right)>\mathrm{0}\:\left(\mathrm{3}\right) \\ $$$${From}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right)\:{we}\:{see}\:{that}\:{there}\:{is} \\ $$$${at}\:{least}\:\mathrm{1}\:{soln}.\:{between}\:\mathrm{0}\:{and}\:\mathrm{2} \\ $$$${From}\:\left(\mathrm{2}\right)\:{and}\:\left(\mathrm{3}\right)\:{we}\:{see}\:{that}\:{there}\:{is} \\ $$$${at}\:{least}\:\mathrm{1}\:{soln}.\:{between}\:\mathrm{2}\:{and}\:\mathrm{16}\left(\:{we}\:{know}\right. \\ $$$$\left.{that}\:{one}\:{of}\:{those}\:{is}\:\mathrm{4}\right) \\ $$$${By}\:{using}\:{Desmos}\:{we}\:{find}\:{there}\:{are} \\ $$$${only}\:\mathrm{2}\:{solns}.:\:{E}=\mathrm{4}\:{and}\:{E}\approx\mathrm{1},\mathrm{753} \\ $$ | ||