Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167576 by mkam last updated on 19/Mar/22

prove by useing the polar cordinaite     ∫_0 ^( (a/2))    ∫_y ^( (√(a^2 −y^2 )))  x dx dy  = ((5 a^3 )/(24 ))

$$\boldsymbol{{prove}}\:\boldsymbol{{by}}\:\boldsymbol{{useing}}\:\boldsymbol{{the}}\:\boldsymbol{{polar}}\:\boldsymbol{{cordinaite}}\: \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{{a}}}{\mathrm{2}}} \:\:\:\int_{\boldsymbol{{y}}} ^{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{y}}^{\mathrm{2}} }} \:\boldsymbol{{x}}\:\boldsymbol{{dx}}\:\boldsymbol{{dy}}\:\:=\:\frac{\mathrm{5}\:\boldsymbol{{a}}^{\mathrm{3}} }{\mathrm{24}\:} \\ $$

Commented by mkam last updated on 20/Mar/22

?????

$$????? \\ $$

Answered by ArielVyny last updated on 19/Mar/22

∫_0 ^(a/2) [(1/2)x^2 ]_y ^(√(a^2 −y^2 )) dy=∫_0 ^(a/2) (1/2)a^2 −y^2                                         =(1/2)a^2 [(a/2)]−(1/3)[(a^3 /8)]=((6a^3 )/(24))−(a^3 /(24))=((5a^3 )/(24))

$$\int_{\mathrm{0}} ^{\frac{{a}}{\mathrm{2}}} \left[\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \right]_{{y}} ^{\sqrt{{a}^{\mathrm{2}} −{y}^{\mathrm{2}} }} {dy}=\int_{\mathrm{0}} ^{\frac{{a}}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{2}}{a}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}{a}^{\mathrm{2}} \left[\frac{{a}}{\mathrm{2}}\right]−\frac{\mathrm{1}}{\mathrm{3}}\left[\frac{{a}^{\mathrm{3}} }{\mathrm{8}}\right]=\frac{\mathrm{6}{a}^{\mathrm{3}} }{\mathrm{24}}−\frac{{a}^{\mathrm{3}} }{\mathrm{24}}=\frac{\mathrm{5}{a}^{\mathrm{3}} }{\mathrm{24}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by ArielVyny last updated on 19/Mar/22

why using polar coordinates

$${why}\:{using}\:{polar}\:{coordinates} \\ $$

Commented by mkam last updated on 19/Mar/22

because my teacher wanted this method

$${because}\:{my}\:{teacher}\:{wanted}\:{this}\:{method} \\ $$

Commented by JDamian last updated on 19/Mar/22

Oh, what kind of you for doing his homework

Terms of Service

Privacy Policy

Contact: info@tinkutara.com