Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16756 by Tinkutara last updated on 26/Jun/17

Alternate vertices of a regular hexagon  are joined as shown. What fraction of  the total area of the hexagon is  shaded? (Justify your answer.)

$$\mathrm{Alternate}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{hexagon} \\ $$$$\mathrm{are}\:\mathrm{joined}\:\mathrm{as}\:\mathrm{shown}.\:\mathrm{What}\:\mathrm{fraction}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hexagon}\:\mathrm{is} \\ $$$$\mathrm{shaded}?\:\left(\mathrm{Justify}\:\mathrm{your}\:\mathrm{answer}.\right) \\ $$

Commented by Tinkutara last updated on 26/Jun/17

Answered by mrW1 last updated on 26/Jun/17

((Side small)/(Side large))=(2/(2(√3)))=(1/(√3))  ((Area small)/(Area large))=(((Side small)/(Side large)))^2 =((1/(√3)))^2 =(1/3)

$$\frac{\mathrm{Side}\:\mathrm{small}}{\mathrm{Side}\:\mathrm{large}}=\frac{\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{3}}}=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\frac{\mathrm{Area}\:\mathrm{small}}{\mathrm{Area}\:\mathrm{large}}=\left(\frac{\mathrm{Side}\:\mathrm{small}}{\mathrm{Side}\:\mathrm{large}}\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Answered by RasheedSoomro last updated on 26/Jun/17

Commented by RasheedSoomro last updated on 26/Jun/17

AnOther way  ((Small triangles in inner hexagon)/(Small triangles in outer hexagon))=((12)/(36))=(1/3)

$$\mathrm{AnOther}\:\mathrm{way} \\ $$$$\frac{\mathrm{Small}\:\mathrm{triangles}\:\mathrm{in}\:\mathrm{inner}\:\mathrm{hexagon}}{\mathrm{Small}\:\mathrm{triangles}\:\mathrm{in}\:\mathrm{outer}\:\mathrm{hexagon}}=\frac{\mathrm{12}}{\mathrm{36}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Commented by Tinkutara last updated on 26/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com