Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167462 by Bagus1003 last updated on 17/Mar/22

4^x +6^x =9^x   How much the x is?

$$\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$

Answered by Jamshidbek last updated on 17/Mar/22

4^x +6^x =9^x ∣:9^x  ⇒ ((2/3))^(2x) +((2/3))^x =1  ((2/3))^x =t  t^2 +t=1 easy

$$\mathrm{4}^{\mathrm{x}} +\mathrm{6}^{\mathrm{x}} =\mathrm{9}^{\mathrm{x}} \mid:\mathrm{9}^{\mathrm{x}} \:\Rightarrow\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2x}} +\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{x}} =\mathrm{1} \\ $$$$\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{x}} =\mathrm{t} \\ $$$$\mathrm{t}^{\mathrm{2}} +\mathrm{t}=\mathrm{1}\:\mathrm{easy} \\ $$

Answered by puissant last updated on 17/Mar/22

4^x +6^x =9^x  ⇒ ((4/9))^x + ((6/9))^x = 1  ⇒ ((2/3))^(2x) + ((2/3))^x −1=0  A=((2/3))^x  ⇒ A^2 +A−1=0  ⇒ A=((1+(√5))/2) ⇒ ((2/3))^x = ((1+(√5))/2)  ⇒ x=((ln2−ln(1+(√5)))/(ln3−ln2)).

$$\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} \:\Rightarrow\:\left(\frac{\mathrm{4}}{\mathrm{9}}\right)^{{x}} +\:\left(\frac{\mathrm{6}}{\mathrm{9}}\right)^{{x}} =\:\mathrm{1} \\ $$$$\Rightarrow\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}{x}} +\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} −\mathrm{1}=\mathrm{0} \\ $$$${A}=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} \:\Rightarrow\:{A}^{\mathrm{2}} +{A}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:{A}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\Rightarrow\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} =\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{x}=\frac{{ln}\mathrm{2}−{ln}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)}{{ln}\mathrm{3}−{ln}\mathrm{2}}. \\ $$

Commented by Jamshidbek last updated on 17/Mar/22

A=((1−(√5))/2) A<0 then A=((2/3))^x  ∀x∈R A>0  A=((1−(√5))/2)  does not root

$$\mathrm{A}=\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{A}<\mathrm{0}\:\mathrm{then}\:\mathrm{A}=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{x}} \:\forall\mathrm{x}\in\mathrm{R}\:\mathrm{A}>\mathrm{0} \\ $$$$\mathrm{A}=\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\mathrm{does}\:\mathrm{not}\:\mathrm{root} \\ $$

Commented by MJS_new last updated on 17/Mar/22

x_1 =((ln (1+(√5)) −ln 2)/(ln 3 −ln 2))  x_2 =((ln (−1+(√5)) −ln 2)/(ln 3 −ln 2))+((iπ)/(ln 3 −ln 2))

$${x}_{\mathrm{1}} =\frac{\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)\:−\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{3}\:−\mathrm{ln}\:\mathrm{2}} \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{ln}\:\left(−\mathrm{1}+\sqrt{\mathrm{5}}\right)\:−\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{3}\:−\mathrm{ln}\:\mathrm{2}}+\frac{\mathrm{i}\pi}{\mathrm{ln}\:\mathrm{3}\:−\mathrm{ln}\:\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com