Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 166975 by henderson last updated on 03/Mar/22

hi !   help me !  lim_(x→−∞)  (e^(1/(x+(√(x^2 +1)))) /x) = ???

$$\mathrm{hi}\:!\: \\ $$$$\mathrm{help}\:\mathrm{me}\:! \\ $$$$\underset{\boldsymbol{{x}}\rightarrow−\infty} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{e}}^{\frac{\mathrm{1}}{\boldsymbol{{x}}+\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}}} }{\boldsymbol{{x}}}\:=\:??? \\ $$

Commented by null last updated on 04/Mar/22

no

$$\mathrm{no} \\ $$

Commented by henderson last updated on 04/Mar/22

no answer for this ??? :(

$$\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{answer}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{this}}\:???\::\left(\right. \\ $$

Commented by MJS_new last updated on 04/Mar/22

OBVIOUSLY!!!

$$\mathbb{OBVIOUSLY}!!! \\ $$

Answered by null last updated on 04/Mar/22

post 1+1 instead!  this is wrong!

$$\mathrm{post}\:\mathrm{1}+\mathrm{1}\:\mathrm{instead}! \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{wrong}! \\ $$

Answered by MJS_new last updated on 04/Mar/22

lim_(x→−∞)  (e^(1/(x+(√(x^2 +1)))) /x) =       [t=(1/(x+(√(x^2 +1)))) ⇔ x=((1−t^2 )/(2t)); x→−∞ ⇒ t→+∞]  =lim_(t→+∞)  ((2te^t )/(1−t^2 )) =lim_(t→+∞)  (((d^2 /dt^2 )[2te^t ])/((d^2 /dt^2 )[1−t^2 ])) =  =lim_(t→+∞)  −(t+2)e^t  =−∞

$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}} }{{x}}\:= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:\Leftrightarrow\:{x}=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}};\:{x}\rightarrow−\infty\:\Rightarrow\:{t}\rightarrow+\infty\right] \\ $$$$=\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{2}{t}\mathrm{e}^{{t}} }{\mathrm{1}−{t}^{\mathrm{2}} }\:=\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\frac{{d}^{\mathrm{2}} }{{dt}^{\mathrm{2}} }\left[\mathrm{2}{t}\mathrm{e}^{{t}} \right]}{\frac{{d}^{\mathrm{2}} }{{dt}^{\mathrm{2}} }\left[\mathrm{1}−{t}^{\mathrm{2}} \right]}\:= \\ $$$$=\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\:−\left({t}+\mathrm{2}\right)\mathrm{e}^{{t}} \:=−\infty \\ $$

Commented by MJS_new last updated on 04/Mar/22

no thank you for this??? :(

$$\mathrm{no}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{this}???\::\left(\right. \\ $$

Commented by henderson last updated on 05/Mar/22

thank you, sir !

$$\mathrm{thank}\:\mathrm{you},\:\mathrm{sir}\:! \\ $$

Commented by MJS_new last updated on 05/Mar/22

��

Answered by Mathspace last updated on 05/Mar/22

f(x)=(e^(1/(x+(√(x^2 +1)))) /x)=_(x=−t)   (e^(1/(−t+(√(t^2 +1)))) /(−t))  =−(e^(1/( (√(t^2 +1))−t)) /t)=−(e^((√(t^2 +1))+t) /t)(t→+∞)  let use hospital theorem  lim_(t→+∞) (e^((√(t^2 +1))+t) /t)  =lim_(t→+∞)   (d/dt)(e^((√(t^2 +1))+t) )  =lim_(t→+∞)    (1+(t/( (√(t^2 +t)))))e^((√(t^2 +1))+t)   =+∞ ⇒lim_(x→−∞) f(x)=−∞

$${f}\left({x}\right)=\frac{{e}^{\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}} }{{x}}=_{{x}=−{t}} \:\:\frac{{e}^{\frac{\mathrm{1}}{−{t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}} }{−{t}} \\ $$$$=−\frac{{e}^{\frac{\mathrm{1}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}−{t}}} }{{t}}=−\frac{{e}^{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+{t}} }{{t}}\left({t}\rightarrow+\infty\right) \\ $$$${let}\:{use}\:{hospital}\:{theorem} \\ $$$${lim}_{{t}\rightarrow+\infty} \frac{{e}^{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+{t}} }{{t}} \\ $$$$={lim}_{{t}\rightarrow+\infty} \:\:\frac{{d}}{{dt}}\left({e}^{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+{t}} \right) \\ $$$$={lim}_{{t}\rightarrow+\infty} \:\:\:\left(\mathrm{1}+\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} +{t}}}\right){e}^{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+{t}} \\ $$$$=+\infty\:\Rightarrow{lim}_{{x}\rightarrow−\infty} {f}\left({x}\right)=−\infty \\ $$

Commented by henderson last updated on 05/Mar/22

thank you, sir !

$$\mathrm{thank}\:\mathrm{you},\:\mathrm{sir}\:! \\ $$

Commented by henderson last updated on 05/Mar/22

i thought the answer was lim_(x→−∞)  f(x)=0.

$$\mathrm{i}\:\mathrm{thought}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{was}\:\underset{\boldsymbol{{x}}\rightarrow−\infty} {\boldsymbol{{lim}}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com