Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 166610 by cortano1 last updated on 23/Feb/22

    ∫ ((x^2 +3)/(x^4 +5x^2 +9)) dx ?

$$\:\:\:\:\int\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{3}}{\mathrm{x}^{\mathrm{4}} +\mathrm{5x}^{\mathrm{2}} +\mathrm{9}}\:\mathrm{dx}\:? \\ $$

Commented by MJS_new last updated on 23/Feb/22

in this case:  (d/dx)[(1/a)arctan ((ax)/(b−x^2 ))]=((x^2 +b)/(x^4 +(a^2 −2b)x^2 +b^2 ))  with a=(√(11)) ∧ b=3  ⇒ ∫((x^2 +3)/(x^4 +5x^2 +9))dx=(1/( (√(11))))arctan (((√(11))x)/(3−x^2 )) +C

$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}: \\ $$$$\frac{{d}}{{dx}}\left[\frac{\mathrm{1}}{{a}}\mathrm{arctan}\:\frac{{ax}}{{b}−{x}^{\mathrm{2}} }\right]=\frac{{x}^{\mathrm{2}} +{b}}{{x}^{\mathrm{4}} +\left({a}^{\mathrm{2}} −\mathrm{2}{b}\right){x}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\mathrm{with}\:{a}=\sqrt{\mathrm{11}}\:\wedge\:{b}=\mathrm{3} \\ $$$$\Rightarrow\:\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{9}}{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{11}}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{11}}{x}}{\mathrm{3}−{x}^{\mathrm{2}} }\:+{C} \\ $$

Answered by MJS_new last updated on 23/Feb/22

∫((x^2 +3)/(x^4 +5x^2 +9))dx=(1/2)∫(dx/(x^2 −x+3))+(1/2)∫(dx/(x^2 +x+3))=       [use commom formula]  =((√(11))/(11))(arctan ((2x−1)/( (√(11)))) +arctan ((2x+1)/( (√(11)))))+C

$$\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{9}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{{x}^{\mathrm{2}} +{x}+\mathrm{3}}= \\ $$$$\:\:\:\:\:\left[\mathrm{use}\:\mathrm{commom}\:\mathrm{formula}\right] \\ $$$$=\frac{\sqrt{\mathrm{11}}}{\mathrm{11}}\left(\mathrm{arctan}\:\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{\mathrm{11}}}\:+\mathrm{arctan}\:\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{11}}}\right)+{C} \\ $$

Commented by cortano1 last updated on 25/Feb/22

nice

$$\mathrm{nice} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com