Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 16616 by Tinkutara last updated on 24/Jun/17

A particle starts from the origin with  velocity (√(44)) ms^(−1)  on a straight  horizontal road. Its acceleration varies  with displacement as shown. The  velocity of the particle as it passes  through the position x = 0.2 km is  [Answer: 18 ms^(−1) ]

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{starts}\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{with} \\ $$$$\mathrm{velocity}\:\sqrt{\mathrm{44}}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{on}\:\mathrm{a}\:\mathrm{straight} \\ $$$$\mathrm{horizontal}\:\mathrm{road}.\:\mathrm{Its}\:\mathrm{acceleration}\:\mathrm{varies} \\ $$$$\mathrm{with}\:\mathrm{displacement}\:\mathrm{as}\:\mathrm{shown}.\:\mathrm{The} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{as}\:\mathrm{it}\:\mathrm{passes} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{position}\:{x}\:=\:\mathrm{0}.\mathrm{2}\:\mathrm{km}\:\mathrm{is} \\ $$$$\left[\mathrm{Answer}:\:\mathrm{18}\:\mathrm{ms}^{−\mathrm{1}} \right] \\ $$

Commented by Tinkutara last updated on 24/Jun/17

Answered by ajfour last updated on 24/Jun/17

  for 0≤x≤100  v^2 =u^2 +2as  v_(100) ^2 =44+2×0.8×100         = 44+160 =204m^2 /s^2  .  after this  for   100≤x≤200  the area under  this portion of a-x graph gives    ∫adx=∫ ((vdv)/dx)dx=((v_f ^2 −v_i ^2 )/2)     area=(1/2)(0.8+0.4)(100)=60   so  ((v_f ^2 −204)/2)=60        v_f  is the velocity at x=200                 v_f =(√(120+204)) =(√(324))=18m/s.

$$\:\:\mathrm{for}\:\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{100} \\ $$$$\mathrm{v}^{\mathrm{2}} =\mathrm{u}^{\mathrm{2}} +\mathrm{2as} \\ $$$$\mathrm{v}_{\mathrm{100}} ^{\mathrm{2}} =\mathrm{44}+\mathrm{2}×\mathrm{0}.\mathrm{8}×\mathrm{100} \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{44}+\mathrm{160}\:=\mathrm{204m}^{\mathrm{2}} /\mathrm{s}^{\mathrm{2}} \:. \\ $$$$\mathrm{after}\:\mathrm{this}\:\:\mathrm{for} \\ $$$$\:\mathrm{100}\leqslant\mathrm{x}\leqslant\mathrm{200}\:\:\mathrm{the}\:\mathrm{area}\:\mathrm{under} \\ $$$$\mathrm{this}\:\mathrm{portion}\:\mathrm{of}\:\mathrm{a}-\mathrm{x}\:\mathrm{graph}\:\mathrm{gives} \\ $$$$\:\:\int\mathrm{adx}=\int\:\frac{\mathrm{vdv}}{\mathrm{dx}}\mathrm{dx}=\frac{\mathrm{v}_{\mathrm{f}} ^{\mathrm{2}} −\mathrm{v}_{\mathrm{i}} ^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\mathrm{area}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{0}.\mathrm{8}+\mathrm{0}.\mathrm{4}\right)\left(\mathrm{100}\right)=\mathrm{60} \\ $$$$\:\mathrm{so}\:\:\frac{\mathrm{v}_{\mathrm{f}} ^{\mathrm{2}} −\mathrm{204}}{\mathrm{2}}=\mathrm{60}\:\:\:\:\:\: \\ $$$$\mathrm{v}_{\mathrm{f}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{at}\:\mathrm{x}=\mathrm{200}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\mathrm{v}_{\mathrm{f}} =\sqrt{\mathrm{120}+\mathrm{204}}\:=\sqrt{\mathrm{324}}=\mathrm{18m}/\mathrm{s}. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 24/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com