Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 166110 by naka3546 last updated on 13/Feb/22

Prove  that    ((( n)),(( 0)) )^2  +  ((( n)),(( 1)) )^2  +  ((( n)),(( 2)) )^2  + …+  ((( n)),(( n)) )^2   =   ((( 2n)),((  n)) )

$$\mathrm{Prove}\:\:\mathrm{that} \\ $$$$\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{0}}\end{pmatrix}^{\mathrm{2}} \:+\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{1}}\end{pmatrix}^{\mathrm{2}} \:+\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{2}}\end{pmatrix}^{\mathrm{2}} \:+\:\ldots+\:\begin{pmatrix}{\:{n}}\\{\:{n}}\end{pmatrix}^{\mathrm{2}} \:\:=\:\:\begin{pmatrix}{\:\mathrm{2}{n}}\\{\:\:{n}}\end{pmatrix} \\ $$

Answered by qaz last updated on 13/Feb/22

 ((n),(0) )^2 + ((n),(1) )^2 +...+ ((n),(n) )^2   =Σ_(k=0) ^n  ((n),(k) )^2   =Σ_(k=0) ^n  ((n),(k) ) ((n),((n−k)) )  =[z^n ](1+z)^n Σ_(k=0) ^n  ((n),(k) )z^k   =[z^n ](1+z)^(2n)   = (((2n)),(n) )

$$\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}^{\mathrm{2}} +\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}^{\mathrm{2}} +...+\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}^{\mathrm{2}} \\ $$$$=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{k}}\end{pmatrix}^{\mathrm{2}} \\ $$$$=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{k}}\end{pmatrix}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}−\mathrm{k}}\end{pmatrix} \\ $$$$=\left[\mathrm{z}^{\mathrm{n}} \right]\left(\mathrm{1}+\mathrm{z}\right)^{\mathrm{n}} \underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{k}}\end{pmatrix}\mathrm{z}^{\mathrm{k}} \\ $$$$=\left[\mathrm{z}^{\mathrm{n}} \right]\left(\mathrm{1}+\mathrm{z}\right)^{\mathrm{2n}} \\ $$$$=\begin{pmatrix}{\mathrm{2n}}\\{\mathrm{n}}\end{pmatrix} \\ $$

Commented by naka3546 last updated on 13/Feb/22

thank you , sir.

$$\mathrm{thank}\:\mathrm{you}\:,\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com