Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 166082 by mnjuly1970 last updated on 12/Feb/22

         prove      Ω = ∫_0 ^( 1) (( (1−x )^( 2) .ln^( 3) (1−x ))/x) dx = ((51)/8) −(π^( 4) /(15))             ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left(\mathrm{1}−{x}\:\right)^{\:\mathrm{2}} .{ln}^{\:\mathrm{3}} \left(\mathrm{1}−{x}\:\right)}{{x}}\:{dx}\:=\:\frac{\mathrm{51}}{\mathrm{8}}\:−\frac{\pi^{\:\mathrm{4}} }{\mathrm{15}}\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\: \\ $$$$ \\ $$

Answered by qaz last updated on 13/Feb/22

∫_0 ^1 (((l−x)^2 ln^3 (1−x))/x)dx  =∫_0 ^1 ((x^2 ln^3 x)/(1−x))dx  =−∫_0 ^1 (1+x)ln^3 xdx+∫_0 ^1 ((ln^3 x)/(1−x))dx  =−(x+(1/2)x^2 )ln^3 x∣_0 ^1 +3∫_0 ^1 (1+(1/2)x)ln^2 xdx−Σ_(n=0) ^∞ (6/((n+1)^4 ))  =3(x+(1/4)x^2 )ln^2 x∣_0 ^1 −6∫_0 ^1 (1+(1/4)x)lnxdx−(π^4 /(15))  =−6(x+(1/8)x^2 )lnx∣_0 ^1 +6∫_0 ^1 (1+(1/8)x)dx−(π^4 /(15))  =6(x+(1/(16))x^2 )∣_0 ^1 −(π^4 /(15))  =((51)/8)−(π^4 /(15))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{l}−\mathrm{x}\right)^{\mathrm{2}} \mathrm{ln}^{\mathrm{3}} \left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{ln}^{\mathrm{3}} \mathrm{x}}{\mathrm{1}−\mathrm{x}}\mathrm{dx} \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}^{\mathrm{3}} \mathrm{xdx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{3}} \mathrm{x}}{\mathrm{1}−\mathrm{x}}\mathrm{dx} \\ $$$$=−\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)\mathrm{ln}^{\mathrm{3}} \mathrm{x}\mid_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{3}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\right)\mathrm{ln}^{\mathrm{2}} \mathrm{xdx}−\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{6}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$=\mathrm{3}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{2}} \right)\mathrm{ln}^{\mathrm{2}} \mathrm{x}\mid_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{6}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}\right)\mathrm{lnxdx}−\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$$$=−\mathrm{6}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{x}^{\mathrm{2}} \right)\mathrm{lnx}\mid_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{6}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{x}\right)\mathrm{dx}−\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$$$=\mathrm{6}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{16}}\mathrm{x}^{\mathrm{2}} \right)\mid_{\mathrm{0}} ^{\mathrm{1}} −\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$$$=\frac{\mathrm{51}}{\mathrm{8}}−\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$

Commented by mnjuly1970 last updated on 13/Feb/22

thx alot sir qaz

$${thx}\:{alot}\:{sir}\:{qaz} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com