Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 165900 by cherokeesay last updated on 09/Feb/22

Commented by som(math1967) last updated on 10/Feb/22

Is the area   {(1/3)×π×8−π(4(√3)−6)^2 −2(√3)} cm^2 ?

$${Is}\:{the}\:{area} \\ $$$$\:\left\{\frac{\mathrm{1}}{\mathrm{3}}×\pi×\mathrm{8}−\pi\left(\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6}\right)^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\right\}\:{cm}^{\mathrm{2}} ? \\ $$

Commented by cherokeesay last updated on 10/Feb/22

⋍ 2,2  goog answer !  thank you.

$$\backsimeq\:\mathrm{2},\mathrm{2} \\ $$$${goog}\:{answer}\:! \\ $$$${thank}\:{you}. \\ $$

Commented by som(math1967) last updated on 10/Feb/22

Commented by som(math1967) last updated on 10/Feb/22

cos∠CAB=((AB)/(AC))=(2/4)⇒∠CAB=60°  BC=AB×tan60=2(√3)cm  ar of  sectorCAE=((60)/(360))×π×4^2 =(1/3)π×8  ar.of △ABC=(1/2)×2×2(√3)=2(√3)cm^2   AO=4−r    AL=2+r  (4−r)^2 =(2+r)^2 +r^2   r^2 +12r−12=0  r=4(√3)−6  ar. of  hatch part  =(1/3)×8π−2(√3)−π(4(√3)−6)^2 cm^2

$${cos}\angle{CAB}=\frac{{AB}}{{AC}}=\frac{\mathrm{2}}{\mathrm{4}}\Rightarrow\angle{CAB}=\mathrm{60}° \\ $$$${BC}={AB}×{tan}\mathrm{60}=\mathrm{2}\sqrt{\mathrm{3}}{cm} \\ $$$${ar}\:{of}\:\:{sectorCAE}=\frac{\mathrm{60}}{\mathrm{360}}×\pi×\mathrm{4}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}}\pi×\mathrm{8} \\ $$$${ar}.{of}\:\bigtriangleup{ABC}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×\mathrm{2}\sqrt{\mathrm{3}}=\mathrm{2}\sqrt{\mathrm{3}}{cm}^{\mathrm{2}} \\ $$$${AO}=\mathrm{4}−{r}\:\:\:\:{AL}=\mathrm{2}+{r} \\ $$$$\left(\mathrm{4}−{r}\right)^{\mathrm{2}} =\left(\mathrm{2}+{r}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} +\mathrm{12}{r}−\mathrm{12}=\mathrm{0} \\ $$$${r}=\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6} \\ $$$${ar}.\:{of}\:\:{hatch}\:{part} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{8}\pi−\mathrm{2}\sqrt{\mathrm{3}}−\pi\left(\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6}\right)^{\mathrm{2}} {cm}^{\mathrm{2}} \\ $$

Commented by Tawa11 last updated on 10/Feb/22

Weldone sir

$$\mathrm{Weldone}\:\mathrm{sir} \\ $$

Answered by Eulerian last updated on 10/Feb/22

   Solution:   Given that:   a = 2 cm   b = (√(4^2 −2^2 )) = 2(√3) cm   sin(θ) = (1/2)  ⇒  θ = 30°   (4−r)^2  = r^2 +(2+r)^2    r^2 +12r−12 = 0   By quadratic formula:   r = ((−12+(√(12^2 +4(12))))/2) = 4(√3)−6  cm      ∴   Area_(hatched)  = ((π(4^2 ))/4) − [π(4(√3)−6)^2  + ((2(4))/2) + (((30°)/(360°)))∙π(4)^2 ] = (48π(√3) − ((244π)/3) − 4) cm^2

$$ \\ $$$$\:\boldsymbol{\mathrm{Solution}}: \\ $$$$\:\mathrm{Given}\:\mathrm{that}: \\ $$$$\:\mathrm{a}\:=\:\mathrm{2}\:\mathrm{cm} \\ $$$$\:\mathrm{b}\:=\:\sqrt{\mathrm{4}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }\:=\:\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{cm} \\ $$$$\:\mathrm{sin}\left(\theta\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\Rightarrow\:\:\theta\:=\:\mathrm{30}° \\ $$$$\:\left(\mathrm{4}−\mathrm{r}\right)^{\mathrm{2}} \:=\:\mathrm{r}^{\mathrm{2}} +\left(\mathrm{2}+\mathrm{r}\right)^{\mathrm{2}} \\ $$$$\:\mathrm{r}^{\mathrm{2}} +\mathrm{12r}−\mathrm{12}\:=\:\mathrm{0} \\ $$$$\:\mathrm{By}\:\mathrm{quadratic}\:\mathrm{formula}: \\ $$$$\:\mathrm{r}\:=\:\frac{−\mathrm{12}+\sqrt{\mathrm{12}^{\mathrm{2}} +\mathrm{4}\left(\mathrm{12}\right)}}{\mathrm{2}}\:=\:\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6}\:\:\mathrm{cm} \\ $$$$\: \\ $$$$\:\therefore \\ $$$$\:\mathrm{Area}_{\mathrm{hatched}} \:=\:\frac{\pi\left(\mathrm{4}^{\mathrm{2}} \right)}{\mathrm{4}}\:−\:\left[\pi\left(\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6}\right)^{\mathrm{2}} \:+\:\frac{\mathrm{2}\left(\mathrm{4}\right)}{\mathrm{2}}\:+\:\left(\frac{\mathrm{30}°}{\mathrm{360}°}\right)\centerdot\pi\left(\mathrm{4}\right)^{\mathrm{2}} \right]\:=\:\left(\mathrm{48}\pi\sqrt{\mathrm{3}}\:−\:\frac{\mathrm{244}\pi}{\mathrm{3}}\:−\:\mathrm{4}\right)\:\mathrm{cm}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Commented by cherokeesay last updated on 10/Feb/22

please, try again !

$${please},\:{try}\:{again}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com