Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 165742 by amin96 last updated on 07/Feb/22

prove that  Σ_(n=0) ^∞ (((2n)!)/((n!)^2 4^n (2n+1)^4 ))=^? (π/(96))(12𝛇(3)+8ln^3 (2)+2π^2 ln(2))    −−−−−−−−by M.A

$$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}\boldsymbol{\mathrm{n}}\right)!}{\left(\boldsymbol{\mathrm{n}}!\right)^{\mathrm{2}} \mathrm{4}^{\boldsymbol{\mathrm{n}}} \left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)^{\mathrm{4}} }\overset{?} {=}\frac{\pi}{\mathrm{96}}\left(\mathrm{12}\boldsymbol{\zeta}\left(\mathrm{3}\right)+\mathrm{8}\boldsymbol{\mathrm{ln}}^{\mathrm{3}} \left(\mathrm{2}\right)+\mathrm{2}\pi^{\mathrm{2}} \boldsymbol{\mathrm{ln}}\left(\mathrm{2}\right)\right) \\ $$$$ \\ $$$$−−−−−−−−\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com