Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 165741 by metamorfose last updated on 07/Feb/22

∫_0 ^π (dt/(1−sina.cost))=??? , a∈]0,(π/2)[

$$\left.\int_{\mathrm{0}} ^{\pi} \frac{{dt}}{\mathrm{1}−{sina}.{cost}}=???\:,\:{a}\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\right. \\ $$

Answered by MJS_new last updated on 08/Feb/22

a∈]0; (π/2)[ ⇒ 0<sin a <1 ⇒ let sin a =A; 0<A<1  ∫(dt/(1−Acos t))=       [u=tan (t/2) ⇒ dt=((2du)/(u^2 +1))]  =2∫(du/((1+A)u^2 +(1−A)))=       [let B=1+A ∧ C=1−A ⇒ B, C >0]  =2∫(du/(Bu^2 +C))=       [u=((√C)/( (√B)))v → du=((√C)/( (√B)))dv]  =(2/( (√(BC))))∫(dv/(v^2 +1))=(2/( (√(BC))))arctan v =  =(2/( (√(1−A^2 ))))arctan (((√(1+A)) u)/( (√(1−A)))) =  =(2/(cos a))arctan (((√(1+sin a)) tan (t/2))/( (√(1−sin a)))) +C  ⇒  answer is lim_(t→π^− )  ((2/(cos a))arctan (((√(1+sin a)) tan (t/2))/( (√(1−sin a))))) =(π/(cos a))

$$\left.{a}\in\right]\mathrm{0};\:\frac{\pi}{\mathrm{2}}\left[\:\Rightarrow\:\mathrm{0}<\mathrm{sin}\:{a}\:<\mathrm{1}\:\Rightarrow\:\mathrm{let}\:\mathrm{sin}\:{a}\:={A};\:\mathrm{0}<{A}<\mathrm{1}\right. \\ $$$$\int\frac{{dt}}{\mathrm{1}−{A}\mathrm{cos}\:{t}}= \\ $$$$\:\:\:\:\:\left[{u}=\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:\Rightarrow\:{dt}=\frac{\mathrm{2}{du}}{{u}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\mathrm{2}\int\frac{{du}}{\left(\mathrm{1}+{A}\right){u}^{\mathrm{2}} +\left(\mathrm{1}−{A}\right)}= \\ $$$$\:\:\:\:\:\left[\mathrm{let}\:{B}=\mathrm{1}+{A}\:\wedge\:{C}=\mathrm{1}−{A}\:\Rightarrow\:{B},\:{C}\:>\mathrm{0}\right] \\ $$$$=\mathrm{2}\int\frac{{du}}{{Bu}^{\mathrm{2}} +{C}}= \\ $$$$\:\:\:\:\:\left[{u}=\frac{\sqrt{{C}}}{\:\sqrt{{B}}}{v}\:\rightarrow\:{du}=\frac{\sqrt{{C}}}{\:\sqrt{{B}}}{dv}\right] \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{{BC}}}\int\frac{{dv}}{{v}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{2}}{\:\sqrt{{BC}}}\mathrm{arctan}\:{v}\:= \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{A}^{\mathrm{2}} }}\mathrm{arctan}\:\frac{\sqrt{\mathrm{1}+\mathrm{A}}\:{u}}{\:\sqrt{\mathrm{1}−{A}}}\:= \\ $$$$=\frac{\mathrm{2}}{\mathrm{cos}\:{a}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{1}+\mathrm{sin}\:{a}}\:\mathrm{tan}\:\frac{{t}}{\mathrm{2}}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:{a}}}\:+{C} \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{is}\:\underset{{t}\rightarrow\pi^{−} } {\mathrm{lim}}\:\left(\frac{\mathrm{2}}{\mathrm{cos}\:{a}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{1}+\mathrm{sin}\:{a}}\:\mathrm{tan}\:\frac{{t}}{\mathrm{2}}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:{a}}}\right)\:=\frac{\pi}{\mathrm{cos}\:{a}} \\ $$

Commented by metamorfose last updated on 09/Feb/22

thnx sir

$${thnx}\:{sir} \\ $$

Answered by Mathspace last updated on 08/Feb/22

let sina =α ⇒  I=∫_0 ^π  (dt/(1−αcost))  =_(tan((t/2))=y)    ∫_0 ^∞   ((2dy)/((1+y^2 )(1−α((1−y^2 )/(1+y^2 )))))  =2∫_0 ^∞   (dy/(1+y^2 −α +αy^2 ))  =2∫_0 ^∞ (dy/(1−α +(1+α)y^2 ))  =(2/(1−α))∫_0 ^∞  (dy/(1+((1+α)/(1−α))y^2 ))  =_(z=(√((1+α)/(1−α)))y)   (2/(1−α))∫_0 ^∞   (dz/( (√((1+α)/(1−α)))(1+z^2 )))  =(2/(1−α))((√(1−α))/( (√(1+α))))×(π/2)  =(π/( (√(1−α^2 ))))=(π/( (√(1−sin^2 α))))=(π/(∣cosα∣))  or 0<α<(π/2) ⇒I=(π/(cosα))

$${let}\:{sina}\:=\alpha\:\Rightarrow \\ $$$${I}=\int_{\mathrm{0}} ^{\pi} \:\frac{{dt}}{\mathrm{1}−\alpha{cost}} \\ $$$$=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={y}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{dy}}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}−\alpha\frac{\mathrm{1}−{y}^{\mathrm{2}} }{\mathrm{1}+{y}^{\mathrm{2}} }\right)} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dy}}{\mathrm{1}+{y}^{\mathrm{2}} −\alpha\:+\alpha{y}^{\mathrm{2}} } \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{dy}}{\mathrm{1}−\alpha\:+\left(\mathrm{1}+\alpha\right){y}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}−\alpha}\int_{\mathrm{0}} ^{\infty} \:\frac{{dy}}{\mathrm{1}+\frac{\mathrm{1}+\alpha}{\mathrm{1}−\alpha}{y}^{\mathrm{2}} } \\ $$$$=_{{z}=\sqrt{\frac{\mathrm{1}+\alpha}{\mathrm{1}−\alpha}}{y}} \:\:\frac{\mathrm{2}}{\mathrm{1}−\alpha}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dz}}{\:\sqrt{\frac{\mathrm{1}+\alpha}{\mathrm{1}−\alpha}}\left(\mathrm{1}+{z}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}−\alpha}\frac{\sqrt{\mathrm{1}−\alpha}}{\:\sqrt{\mathrm{1}+\alpha}}×\frac{\pi}{\mathrm{2}} \\ $$$$=\frac{\pi}{\:\sqrt{\mathrm{1}−\alpha^{\mathrm{2}} }}=\frac{\pi}{\:\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} \alpha}}=\frac{\pi}{\mid{cos}\alpha\mid} \\ $$$${or}\:\mathrm{0}<\alpha<\frac{\pi}{\mathrm{2}}\:\Rightarrow{I}=\frac{\pi}{{cos}\alpha} \\ $$

Commented by metamorfose last updated on 09/Feb/22

thnx sir

$${thnx}\:{sir} \\ $$

Commented by Mathspace last updated on 08/Feb/22

I=(π/(cosa))

$${I}=\frac{\pi}{{cosa}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com