Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 165725 by mathocean1 last updated on 06/Feb/22

Show that : ∀ k ∈ N^(∗ ) ,   (1/(k+1))≤ln(k+1)−ln(k)≤(1/k)

$${Show}\:{that}\::\:\forall\:{k}\:\in\:\mathbb{N}^{\ast\:} ,\: \\ $$$$\frac{\mathrm{1}}{{k}+\mathrm{1}}\leqslant{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\leqslant\frac{\mathrm{1}}{{k}} \\ $$

Answered by TheSupreme last updated on 07/Feb/22

ln(1+x)≤x ∀R^+   f(x)=ln(1+x)  g(x)=x  f(0)=g(0)=0  f′(x)=(1/(1+x))  g′(x)=1  f′(x)≤1=g(x)  so f(x) grows lower than g(x)  no other zeroes     ln(k+1)−ln(k)=ln(((k+1)/k))=ln(1+(1/k))≤(1/k)  −(ln(k)−ln(k+1))=−ln((k/(k+1)))=−ln(1−(1/(k+1)))≤−(1/(k+1))  ln(1−(1/(k+1)))≥(1/(k+1))  (1/(k+1))≤ln(k+1)−ln(k)≤(1/k)

$${ln}\left(\mathrm{1}+{x}\right)\leqslant{x}\:\forall\mathbb{R}^{+} \\ $$$${f}\left({x}\right)={ln}\left(\mathrm{1}+{x}\right) \\ $$$${g}\left({x}\right)={x} \\ $$$${f}\left(\mathrm{0}\right)={g}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}} \\ $$$${g}'\left({x}\right)=\mathrm{1} \\ $$$${f}'\left({x}\right)\leqslant\mathrm{1}={g}\left({x}\right) \\ $$$${so}\:{f}\left({x}\right)\:{grows}\:{lower}\:{than}\:{g}\left({x}\right) \\ $$$${no}\:{other}\:{zeroes}\: \\ $$$$ \\ $$$${ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)={ln}\left(\frac{{k}+\mathrm{1}}{{k}}\right)={ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\leqslant\frac{\mathrm{1}}{{k}} \\ $$$$−\left({ln}\left({k}\right)−{ln}\left({k}+\mathrm{1}\right)\right)=−{ln}\left(\frac{{k}}{{k}+\mathrm{1}}\right)=−{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{k}+\mathrm{1}}\right)\leqslant−\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{k}+\mathrm{1}}\right)\geqslant\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{{k}+\mathrm{1}}\leqslant{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\leqslant\frac{\mathrm{1}}{{k}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com