Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 165685 by daus last updated on 06/Feb/22

 _0 ∫^2 ∣ x^2 −2x+1 ∣ dx =?

$$\:_{\mathrm{0}} \int^{\mathrm{2}} \mid\:{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\:\mid\:{dx}\:=?\: \\ $$

Answered by TheSupreme last updated on 07/Feb/22

∫_0 ^2 ∣(x−1)^2 ∣dx=∫_0 ^2 (x−1)^2 dx=(((x−1)^3 )/3)∣_0 ^2 =(2/3)

$$\int_{\mathrm{0}} ^{\mathrm{2}} \mid\left({x}−\mathrm{1}\right)^{\mathrm{2}} \mid{dx}=\int_{\mathrm{0}} ^{\mathrm{2}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} {dx}=\frac{\left({x}−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{3}}\mid_{\mathrm{0}} ^{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by mr W last updated on 06/Feb/22

wrong!  ∫_0 ^2 ≠∫_0 ^1

$${wrong}! \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \neq\int_{\mathrm{0}} ^{\mathrm{1}} \\ $$

Answered by alephzero last updated on 06/Feb/22

∫_0 ^2 ∣x^2 −2x+1∣ dx =  = ∫_0 ^2 ∣(x−1)^2 ∣ dx =  = ∫_0 ^2 (x−1)^2  dx =   = ∫_0 ^2 x^2 −2x+1 dx =  = [∫x^2 dx−∫2xdx+∫dx]_0 ^2  =  = [(x^3 /3)−((2x^2 )/2)+x]_0 ^2  =  = (8/3)−(8/2)+2 = ((16−24)/6)+2 = −(8/6)+  +2 = −(4/3)+2 = 2−(4/3) = ((6−4)/3) =  = (2/3)

$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\mid{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\mid\:{dx}\:= \\ $$$$=\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\mid\left({x}−\mathrm{1}\right)^{\mathrm{2}} \mid\:{dx}\:= \\ $$$$=\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:{dx}\:=\: \\ $$$$=\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\:{dx}\:= \\ $$$$=\:\left[\int{x}^{\mathrm{2}} {dx}−\int\mathrm{2}{xdx}+\int{dx}\right]_{\mathrm{0}} ^{\mathrm{2}} \:= \\ $$$$=\:\left[\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{2}}+{x}\right]_{\mathrm{0}} ^{\mathrm{2}} \:= \\ $$$$=\:\frac{\mathrm{8}}{\mathrm{3}}−\frac{\mathrm{8}}{\mathrm{2}}+\mathrm{2}\:=\:\frac{\mathrm{16}−\mathrm{24}}{\mathrm{6}}+\mathrm{2}\:=\:−\frac{\mathrm{8}}{\mathrm{6}}+ \\ $$$$+\mathrm{2}\:=\:−\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{2}\:=\:\mathrm{2}−\frac{\mathrm{4}}{\mathrm{3}}\:=\:\frac{\mathrm{6}−\mathrm{4}}{\mathrm{3}}\:= \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com